Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048702928> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3048702928 endingPage "485" @default.
- W3048702928 startingPage "453" @default.
- W3048702928 abstract "We develop a correspondence between Borel equivalence relations induced by closed subgroups of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript normal infinity> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>S_infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and weak choice principles, and apply it to prove a conjecture of Hjorth-Kechris-Louveau (1998). For example, we show that the equivalence relation <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=approximately-equals Subscript omega plus 1 comma 0 Superscript asterisk Baseline> <mml:semantics> <mml:msubsup> <mml:mo>≅<!-- ≅ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:annotation encoding=application/x-tex>cong ^ast _{omega +1,0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is strictly below <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=approximately-equals Subscript omega plus 1 comma greater-than omega Superscript asterisk Baseline> <mml:semantics> <mml:msubsup> <mml:mo>≅<!-- ≅ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>></mml:mo> <mml:mi>ω<!-- ω --></mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:annotation encoding=application/x-tex>cong ^ast _{omega +1,>omega }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in Borel reducibility. By results of Hjorth-Kechris-Louveau, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=approximately-equals Subscript omega plus 1 comma greater-than omega Superscript asterisk Baseline> <mml:semantics> <mml:msubsup> <mml:mo>≅<!-- ≅ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>></mml:mo> <mml:mi>ω<!-- ω --></mml:mi> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:annotation encoding=application/x-tex>cong ^ast _{omega +1,>omega }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> provides invariants for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Sigma Subscript omega plus 1 Superscript 0> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=normal>Σ<!-- Σ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mn>0</mml:mn> </mml:msubsup> <mml:annotation encoding=application/x-tex>Sigma ^0_{omega +1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equivalence relations induced by actions of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript normal infinity> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>S_infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, while <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=approximately-equals Subscript omega plus 1 comma 0 Superscript asterisk Baseline> <mml:semantics> <mml:msubsup> <mml:mo>≅<!-- ≅ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:annotation encoding=application/x-tex>cong ^ast _{omega +1,0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> provides invariants for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Sigma Subscript omega plus 1 Superscript 0> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=normal>Σ<!-- Σ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ω<!-- ω --></mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mn>0</mml:mn> </mml:msubsup> <mml:annotation encoding=application/x-tex>Sigma ^0_{omega +1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equivalence relations induced by actions of <italic>abelian</italic> closed subgroups of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript normal infinity> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>S_infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We further apply these techniques to study the Friedman-Stanley jumps. For example, we find an equivalence relation <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=application/x-tex>F</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, Borel bireducible with <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=equals Superscript plus plus Baseline> <mml:semantics> <mml:msup> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>+</mml:mo> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>=^{++}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, so that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F up harpoon with barb right upper C> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=false>↾<!-- ↾ --></mml:mo> <mml:mi>C</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>Frestriction C</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not Borel reducible to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=equals Superscript plus Baseline> <mml:semantics> <mml:msup> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>=^{+}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any non-meager set <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C> <mml:semantics> <mml:mi>C</mml:mi> <mml:annotation encoding=application/x-tex>C</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This answers a question of Zapletal, arising from the results of Kanovei-Sabok-Zapletal (2013). For these proofs we analyze the symmetric models <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M Subscript n> <mml:semantics> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>M_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n greater-than omega> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>></mml:mo> <mml:mi>ω<!-- ω --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>n>omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, developed by Monro (1973), and extend the construction past <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=omega> <mml:semantics> <mml:mi>ω<!-- ω --></mml:mi> <mml:annotation encoding=application/x-tex>omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, through all countable ordinals. This answers a question of Karagila (2019)." @default.
- W3048702928 created "2020-08-18" @default.
- W3048702928 creator A5015845391 @default.
- W3048702928 date "2020-11-03" @default.
- W3048702928 modified "2023-09-23" @default.
- W3048702928 title "Borel reducibility and symmetric models" @default.
- W3048702928 cites W1009185132 @default.
- W3048702928 cites W1482552562 @default.
- W3048702928 cites W1517743699 @default.
- W3048702928 cites W1521243691 @default.
- W3048702928 cites W1602868010 @default.
- W3048702928 cites W1608084331 @default.
- W3048702928 cites W1860088429 @default.
- W3048702928 cites W1989586176 @default.
- W3048702928 cites W2007726802 @default.
- W3048702928 cites W2016314496 @default.
- W3048702928 cites W2030711895 @default.
- W3048702928 cites W2032982436 @default.
- W3048702928 cites W2053287710 @default.
- W3048702928 cites W2105402645 @default.
- W3048702928 cites W2115456387 @default.
- W3048702928 cites W2140891656 @default.
- W3048702928 cites W2152657121 @default.
- W3048702928 cites W2166399063 @default.
- W3048702928 cites W2315572811 @default.
- W3048702928 cites W2609109703 @default.
- W3048702928 cites W3105785483 @default.
- W3048702928 cites W3137711565 @default.
- W3048702928 cites W4237501179 @default.
- W3048702928 cites W4237762810 @default.
- W3048702928 cites W635392658 @default.
- W3048702928 cites W976787978 @default.
- W3048702928 doi "https://doi.org/10.1090/tran/8250" @default.
- W3048702928 hasPublicationYear "2020" @default.
- W3048702928 type Work @default.
- W3048702928 sameAs 3048702928 @default.
- W3048702928 citedByCount "4" @default.
- W3048702928 countsByYear W30487029282020 @default.
- W3048702928 countsByYear W30487029282021 @default.
- W3048702928 countsByYear W30487029282023 @default.
- W3048702928 crossrefType "journal-article" @default.
- W3048702928 hasAuthorship W3048702928A5015845391 @default.
- W3048702928 hasBestOaLocation W30487029281 @default.
- W3048702928 hasConcept C11413529 @default.
- W3048702928 hasConcept C154945302 @default.
- W3048702928 hasConcept C33923547 @default.
- W3048702928 hasConcept C41008148 @default.
- W3048702928 hasConcept C77088390 @default.
- W3048702928 hasConceptScore W3048702928C11413529 @default.
- W3048702928 hasConceptScore W3048702928C154945302 @default.
- W3048702928 hasConceptScore W3048702928C33923547 @default.
- W3048702928 hasConceptScore W3048702928C41008148 @default.
- W3048702928 hasConceptScore W3048702928C77088390 @default.
- W3048702928 hasIssue "1" @default.
- W3048702928 hasLocation W30487029281 @default.
- W3048702928 hasLocation W30487029282 @default.
- W3048702928 hasOpenAccess W3048702928 @default.
- W3048702928 hasPrimaryLocation W30487029281 @default.
- W3048702928 hasRelatedWork W1981207589 @default.
- W3048702928 hasRelatedWork W2065180665 @default.
- W3048702928 hasRelatedWork W2351491280 @default.
- W3048702928 hasRelatedWork W2371447506 @default.
- W3048702928 hasRelatedWork W2374348909 @default.
- W3048702928 hasRelatedWork W2386154510 @default.
- W3048702928 hasRelatedWork W2386767533 @default.
- W3048702928 hasRelatedWork W2394396836 @default.
- W3048702928 hasRelatedWork W2901938453 @default.
- W3048702928 hasRelatedWork W303980170 @default.
- W3048702928 hasVolume "374" @default.
- W3048702928 isParatext "false" @default.
- W3048702928 isRetracted "false" @default.
- W3048702928 magId "3048702928" @default.
- W3048702928 workType "article" @default.