Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048705786> ?p ?o ?g. }
- W3048705786 endingPage "113856" @default.
- W3048705786 startingPage "113856" @default.
- W3048705786 abstract "Abstract Clustering algorithms aim at finding dense regions of data based on similarities and dissimilarities of data points. Noise and outliers contribute to the computational procedure of the algorithms as well as the actual data points that leads to inaccurate and misplaced cluster centers. This problem also arises when sizes of the clusters are different that moves centers of small clusters towards large clusters. Mass of the data points is important as well as their location in engineering and physics where non-uniform mass distribution results displacement of the cluster centers towards heavier clusters even if sizes of the clusters are identical and the data are noise-free. Fuzzy C-Means (FCM) algorithm that suffers from these problems is the most popular fuzzy clustering algorithm and has been subject of numerous researches and developments though improvements are still marginal. This work revises the FCM algorithm to make it applicable to data with unequal cluster sizes, noise and outliers, and non-uniform mass distribution. Revised FCM (RFCM) algorithm employs adaptive exponential functions to eliminate impacts of noise and outliers on the cluster centers and modifies constraint of the FCM algorithm to prevent large or heavier clusters from attracting centers of small clusters. Several algorithms are reviewed and their mathematical structures are discussed in the paper including Possibilistic Fuzzy C-Means (PFCM), Possibilistic C-Means (PCM), Robust Fuzzy C-Means (FCM-σ), Noise Clustering (NC), Kernel Fuzzy C-Means (KFCM), Intuitionistic Fuzzy C-Means (IFCM), Robust Kernel Fuzzy C-Mean (KFCM-σ), Robust Intuitionistic Fuzzy C-Means (IFCM-σ), Kernel Intuitionistic Fuzzy C-Means (KIFCM), Robust Kernel Intuitionistic Fuzzy C-Means (KIFCM-σ), Credibilistic Fuzzy C-Means (CFCM), Size-insensitive integrity-based Fuzzy C-Means (siibFCM), Size-insensitive Fuzzy C-Means (csiFCM), Subtractive Clustering (SC), Density Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Models (GMM), Spectral clustering, and Outlier Removal Clustering (ORC). Some of these algorithms are suitable for noisy data and some others are designed for data with unequal clusters. The study shows that the RFCM algorithm works for both cases and outperforms the both categories of the algorithms." @default.
- W3048705786 created "2020-08-18" @default.
- W3048705786 creator A5091885542 @default.
- W3048705786 date "2021-03-01" @default.
- W3048705786 modified "2023-10-10" @default.
- W3048705786 title "Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development" @default.
- W3048705786 cites W1570834090 @default.
- W3048705786 cites W1873027057 @default.
- W3048705786 cites W1971173951 @default.
- W3048705786 cites W1995450389 @default.
- W3048705786 cites W1995612572 @default.
- W3048705786 cites W1996747841 @default.
- W3048705786 cites W1998382295 @default.
- W3048705786 cites W2007042673 @default.
- W3048705786 cites W2007861510 @default.
- W3048705786 cites W2018861434 @default.
- W3048705786 cites W2025931908 @default.
- W3048705786 cites W2029074121 @default.
- W3048705786 cites W2033132936 @default.
- W3048705786 cites W2034712837 @default.
- W3048705786 cites W2045199338 @default.
- W3048705786 cites W2048347185 @default.
- W3048705786 cites W2049636482 @default.
- W3048705786 cites W2053677366 @default.
- W3048705786 cites W2054232099 @default.
- W3048705786 cites W2058063871 @default.
- W3048705786 cites W2077599753 @default.
- W3048705786 cites W2097325952 @default.
- W3048705786 cites W2113535566 @default.
- W3048705786 cites W2115077250 @default.
- W3048705786 cites W2116442055 @default.
- W3048705786 cites W2120688485 @default.
- W3048705786 cites W2125836384 @default.
- W3048705786 cites W2127301647 @default.
- W3048705786 cites W2127817155 @default.
- W3048705786 cites W2130467234 @default.
- W3048705786 cites W2130926326 @default.
- W3048705786 cites W2132914434 @default.
- W3048705786 cites W2134676383 @default.
- W3048705786 cites W2138036661 @default.
- W3048705786 cites W2138107248 @default.
- W3048705786 cites W2138762030 @default.
- W3048705786 cites W2139691084 @default.
- W3048705786 cites W2164381747 @default.
- W3048705786 cites W2166999932 @default.
- W3048705786 cites W2167260407 @default.
- W3048705786 cites W2167428023 @default.
- W3048705786 cites W2170864621 @default.
- W3048705786 cites W2170938037 @default.
- W3048705786 cites W2170975407 @default.
- W3048705786 cites W2171855237 @default.
- W3048705786 cites W2206460478 @default.
- W3048705786 cites W2287247733 @default.
- W3048705786 cites W2319017187 @default.
- W3048705786 cites W2518887646 @default.
- W3048705786 cites W2525650139 @default.
- W3048705786 cites W2563061335 @default.
- W3048705786 cites W2579187267 @default.
- W3048705786 cites W2607943834 @default.
- W3048705786 cites W2903784017 @default.
- W3048705786 cites W2905180704 @default.
- W3048705786 cites W2912456704 @default.
- W3048705786 cites W2946787236 @default.
- W3048705786 cites W2962721123 @default.
- W3048705786 cites W2965490730 @default.
- W3048705786 cites W2967181455 @default.
- W3048705786 cites W2979780764 @default.
- W3048705786 cites W2995931523 @default.
- W3048705786 cites W3017661754 @default.
- W3048705786 cites W3019593337 @default.
- W3048705786 doi "https://doi.org/10.1016/j.eswa.2020.113856" @default.
- W3048705786 hasPublicationYear "2021" @default.
- W3048705786 type Work @default.
- W3048705786 sameAs 3048705786 @default.
- W3048705786 citedByCount "104" @default.
- W3048705786 countsByYear W30487057862021 @default.
- W3048705786 countsByYear W30487057862022 @default.
- W3048705786 countsByYear W30487057862023 @default.
- W3048705786 crossrefType "journal-article" @default.
- W3048705786 hasAuthorship W3048705786A5091885542 @default.
- W3048705786 hasConcept C11413529 @default.
- W3048705786 hasConcept C115961682 @default.
- W3048705786 hasConcept C124101348 @default.
- W3048705786 hasConcept C153180895 @default.
- W3048705786 hasConcept C154945302 @default.
- W3048705786 hasConcept C164866538 @default.
- W3048705786 hasConcept C17212007 @default.
- W3048705786 hasConcept C199360897 @default.
- W3048705786 hasConcept C33704608 @default.
- W3048705786 hasConcept C41008148 @default.
- W3048705786 hasConcept C58166 @default.
- W3048705786 hasConcept C73555534 @default.
- W3048705786 hasConcept C79337645 @default.
- W3048705786 hasConcept C99498987 @default.
- W3048705786 hasConceptScore W3048705786C11413529 @default.
- W3048705786 hasConceptScore W3048705786C115961682 @default.
- W3048705786 hasConceptScore W3048705786C124101348 @default.
- W3048705786 hasConceptScore W3048705786C153180895 @default.