Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048723059> ?p ?o ?g. }
- W3048723059 endingPage "185006" @default.
- W3048723059 startingPage "185006" @default.
- W3048723059 abstract "Previous studies have demonstrated the feasibility of reducing noise with deep learning-based methods for low-dose fluorodeoxyglucose (FDG) positron emission tomography (PET). This work aimed to investigate the feasibility of noise reduction for tracers without sufficient training datasets using a deep transfer learning approach, which can utilize existing networks trained by the widely available FDG datasets. In this study, the deep transfer learning strategy based on a fully 3D patch-based U-Net was investigated on a 18F-fluoromisonidazole (18F-FMISO) dataset using single-bed scanning and a 68Ga-DOTATATE dataset using whole-body scanning. The datasets of 18F-FDG by single-bed scanning and whole-body scanning were used to obtain pre-trained U-Nets separately for subsequent cross-tracer and cross-protocol transfer learning. The full-dose PET images were used as the labels while low-dose PET images from 10% counts were used as the inputs. Three types of U-Nets were obtained: a U-Net trained by FDG dataset, a pre-trained FDG U-Net fine-tuned by another less-available tracer (FMISO/DOATATE), and a U-Net completely trained by a large number of less-available tracer datasets (FMISO/DOATATE), used as the reference U-Net. The denoising performance of the three types of U-Nets was evaluated on single-bed 18F-FMISO and whole-body 68Ga-DOTATATE separately and compared using normalized root-mean-square error (NRMSE), signal-to-noise ratio (SNR), and relative bias of region of interest (ROI). For cross-tracer transfer learning, all the U-Nets provided denoised images with similar quality for both tracers. There was no significant difference in terms of NRMSE and SNR when comparing the former two U-Nets with the reference U-Net. The ROI biases for these U-Nets were similar. For cross-tracer and cross-protocol transfer learning, the pre-trained single-bed FDG U-Net fine-tuned by whole-body DOTATATE data provided the most consistent images with the reference U-Net. Fine-tuning significantly reduced the NRMSE and the ROI bias and improved the SNR when comparing the fine-tuned U-Net with the U-Net trained by single-bed FDG only (NRMSE: 96.3% ± 21.1% versus 120.6% ± 18.5%, ROI bias: -10.5% ± 13.0% versus -14.7% ± 6.4%, SNR: 4.2 ± 1.4 versus 3.9 ± 1.6, for fine-tuned U-Net and the U-Net trained by single-bed FDG, respectively, with p < 0.01 in all cases). This work demonstrated that it is feasible to utilize existing networks well-trained by FDG datasets to reduce the noise for other less-available tracers and other scanning protocols by using the fine-tuning strategy." @default.
- W3048723059 created "2020-08-18" @default.
- W3048723059 creator A5018264085 @default.
- W3048723059 creator A5022017027 @default.
- W3048723059 creator A5044301848 @default.
- W3048723059 creator A5051481992 @default.
- W3048723059 creator A5074802964 @default.
- W3048723059 creator A5083553196 @default.
- W3048723059 date "2020-09-14" @default.
- W3048723059 modified "2023-10-10" @default.
- W3048723059 title "Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET" @default.
- W3048723059 cites W1576677061 @default.
- W3048723059 cites W1901129140 @default.
- W3048723059 cites W1966511552 @default.
- W3048723059 cites W1981244178 @default.
- W3048723059 cites W1994134155 @default.
- W3048723059 cites W2017566801 @default.
- W3048723059 cites W2044079709 @default.
- W3048723059 cites W2084032129 @default.
- W3048723059 cites W2090501225 @default.
- W3048723059 cites W2096719319 @default.
- W3048723059 cites W2122196655 @default.
- W3048723059 cites W2169643258 @default.
- W3048723059 cites W2395579298 @default.
- W3048723059 cites W2515162663 @default.
- W3048723059 cites W2539075699 @default.
- W3048723059 cites W2617128058 @default.
- W3048723059 cites W2729145866 @default.
- W3048723059 cites W2758460516 @default.
- W3048723059 cites W2898241136 @default.
- W3048723059 cites W2899604332 @default.
- W3048723059 cites W2914020168 @default.
- W3048723059 cites W2947628805 @default.
- W3048723059 doi "https://doi.org/10.1088/1361-6560/abae08" @default.
- W3048723059 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32924973" @default.
- W3048723059 hasPublicationYear "2020" @default.
- W3048723059 type Work @default.
- W3048723059 sameAs 3048723059 @default.
- W3048723059 citedByCount "22" @default.
- W3048723059 countsByYear W30487230592021 @default.
- W3048723059 countsByYear W30487230592022 @default.
- W3048723059 countsByYear W30487230592023 @default.
- W3048723059 crossrefType "journal-article" @default.
- W3048723059 hasAuthorship W3048723059A5018264085 @default.
- W3048723059 hasAuthorship W3048723059A5022017027 @default.
- W3048723059 hasAuthorship W3048723059A5044301848 @default.
- W3048723059 hasAuthorship W3048723059A5051481992 @default.
- W3048723059 hasAuthorship W3048723059A5074802964 @default.
- W3048723059 hasAuthorship W3048723059A5083553196 @default.
- W3048723059 hasConcept C108583219 @default.
- W3048723059 hasConcept C115961682 @default.
- W3048723059 hasConcept C121332964 @default.
- W3048723059 hasConcept C150899416 @default.
- W3048723059 hasConcept C153180895 @default.
- W3048723059 hasConcept C154945302 @default.
- W3048723059 hasConcept C163294075 @default.
- W3048723059 hasConcept C173608175 @default.
- W3048723059 hasConcept C185544564 @default.
- W3048723059 hasConcept C2775842073 @default.
- W3048723059 hasConcept C2776175482 @default.
- W3048723059 hasConcept C2777415128 @default.
- W3048723059 hasConcept C2778863792 @default.
- W3048723059 hasConcept C2989005 @default.
- W3048723059 hasConcept C41008148 @default.
- W3048723059 hasConcept C71924100 @default.
- W3048723059 hasConcept C99498987 @default.
- W3048723059 hasConceptScore W3048723059C108583219 @default.
- W3048723059 hasConceptScore W3048723059C115961682 @default.
- W3048723059 hasConceptScore W3048723059C121332964 @default.
- W3048723059 hasConceptScore W3048723059C150899416 @default.
- W3048723059 hasConceptScore W3048723059C153180895 @default.
- W3048723059 hasConceptScore W3048723059C154945302 @default.
- W3048723059 hasConceptScore W3048723059C163294075 @default.
- W3048723059 hasConceptScore W3048723059C173608175 @default.
- W3048723059 hasConceptScore W3048723059C185544564 @default.
- W3048723059 hasConceptScore W3048723059C2775842073 @default.
- W3048723059 hasConceptScore W3048723059C2776175482 @default.
- W3048723059 hasConceptScore W3048723059C2777415128 @default.
- W3048723059 hasConceptScore W3048723059C2778863792 @default.
- W3048723059 hasConceptScore W3048723059C2989005 @default.
- W3048723059 hasConceptScore W3048723059C41008148 @default.
- W3048723059 hasConceptScore W3048723059C71924100 @default.
- W3048723059 hasConceptScore W3048723059C99498987 @default.
- W3048723059 hasFunder F4320332161 @default.
- W3048723059 hasIssue "18" @default.
- W3048723059 hasLocation W30487230591 @default.
- W3048723059 hasLocation W30487230592 @default.
- W3048723059 hasOpenAccess W3048723059 @default.
- W3048723059 hasPrimaryLocation W30487230591 @default.
- W3048723059 hasRelatedWork W1966069390 @default.
- W3048723059 hasRelatedWork W1970746087 @default.
- W3048723059 hasRelatedWork W1998782558 @default.
- W3048723059 hasRelatedWork W2001254114 @default.
- W3048723059 hasRelatedWork W2018752697 @default.
- W3048723059 hasRelatedWork W2045362891 @default.
- W3048723059 hasRelatedWork W2054546918 @default.
- W3048723059 hasRelatedWork W2080122327 @default.
- W3048723059 hasRelatedWork W2090152913 @default.