Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048747054> ?p ?o ?g. }
- W3048747054 endingPage "655" @default.
- W3048747054 startingPage "629" @default.
- W3048747054 abstract "Abstract This paper introduces a novel collection of word embeddings, numerical representations of lexical semantics, in 55 languages, trained on a large corpus of pseudo-conversational speech transcriptions from television shows and movies. The embeddings were trained on the OpenSubtitles corpus using the fastText implementation of the skipgram algorithm. Performance comparable with (and in some cases exceeding) embeddings trained on non-conversational (Wikipedia) text is reported on standard benchmark evaluation datasets. A novel evaluation method of particular relevance to psycholinguists is also introduced: prediction of experimental lexical norms in multiple languages. The models, as well as code for reproducing the models and all analyses reported in this paper (implemented as a user-friendly Python package), are freely available at: https://github.com/jvparidon/subs2vec ." @default.
- W3048747054 created "2020-08-18" @default.
- W3048747054 creator A5017013518 @default.
- W3048747054 creator A5079669513 @default.
- W3048747054 date "2020-08-12" @default.
- W3048747054 modified "2023-10-17" @default.
- W3048747054 title "subs2vec: Word embeddings from subtitles in 55 languages" @default.
- W3048747054 cites W1633328346 @default.
- W3048747054 cites W1963610588 @default.
- W3048747054 cites W1964081251 @default.
- W3048747054 cites W1974991592 @default.
- W3048747054 cites W1979034117 @default.
- W3048747054 cites W1979532929 @default.
- W3048747054 cites W1989847457 @default.
- W3048747054 cites W1992121558 @default.
- W3048747054 cites W1997161938 @default.
- W3048747054 cites W1999081314 @default.
- W3048747054 cites W2012575176 @default.
- W3048747054 cites W2018930971 @default.
- W3048747054 cites W2023736093 @default.
- W3048747054 cites W2026487812 @default.
- W3048747054 cites W2030751416 @default.
- W3048747054 cites W2033320065 @default.
- W3048747054 cites W2043912567 @default.
- W3048747054 cites W2048795844 @default.
- W3048747054 cites W2054566922 @default.
- W3048747054 cites W2059630310 @default.
- W3048747054 cites W2080100102 @default.
- W3048747054 cites W2093886871 @default.
- W3048747054 cites W2103318667 @default.
- W3048747054 cites W2103354269 @default.
- W3048747054 cites W2105544393 @default.
- W3048747054 cites W2124217660 @default.
- W3048747054 cites W2129773034 @default.
- W3048747054 cites W2134178005 @default.
- W3048747054 cites W2134696098 @default.
- W3048747054 cites W2135971384 @default.
- W3048747054 cites W2142625445 @default.
- W3048747054 cites W2147284708 @default.
- W3048747054 cites W2168625136 @default.
- W3048747054 cites W2169716859 @default.
- W3048747054 cites W2176085882 @default.
- W3048747054 cites W2217402295 @default.
- W3048747054 cites W2250189634 @default.
- W3048747054 cites W2290759784 @default.
- W3048747054 cites W2335367902 @default.
- W3048747054 cites W2345836734 @default.
- W3048747054 cites W2412122638 @default.
- W3048747054 cites W2415973339 @default.
- W3048747054 cites W2434184590 @default.
- W3048747054 cites W2493916176 @default.
- W3048747054 cites W2507274780 @default.
- W3048747054 cites W2559779584 @default.
- W3048747054 cites W2585683993 @default.
- W3048747054 cites W2588446908 @default.
- W3048747054 cites W2606700155 @default.
- W3048747054 cites W2617602064 @default.
- W3048747054 cites W2735962253 @default.
- W3048747054 cites W2756024538 @default.
- W3048747054 cites W2765099767 @default.
- W3048747054 cites W2769358515 @default.
- W3048747054 cites W2782213998 @default.
- W3048747054 cites W2788153759 @default.
- W3048747054 cites W2805123451 @default.
- W3048747054 cites W2810597146 @default.
- W3048747054 cites W2888587255 @default.
- W3048747054 cites W2889870962 @default.
- W3048747054 cites W2903145455 @default.
- W3048747054 cites W2936522029 @default.
- W3048747054 cites W2940968901 @default.
- W3048747054 cites W2963366649 @default.
- W3048747054 cites W2963419157 @default.
- W3048747054 cites W2963780471 @default.
- W3048747054 cites W2971448691 @default.
- W3048747054 cites W2981262460 @default.
- W3048747054 cites W2981925679 @default.
- W3048747054 cites W2982116886 @default.
- W3048747054 cites W2999342015 @default.
- W3048747054 cites W3006103618 @default.
- W3048747054 cites W3115620221 @default.
- W3048747054 cites W3216404684 @default.
- W3048747054 cites W68782630 @default.
- W3048747054 cites W2530791349 @default.
- W3048747054 doi "https://doi.org/10.3758/s13428-020-01406-3" @default.
- W3048747054 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8062394" @default.
- W3048747054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32789660" @default.
- W3048747054 hasPublicationYear "2020" @default.
- W3048747054 type Work @default.
- W3048747054 sameAs 3048747054 @default.
- W3048747054 citedByCount "11" @default.
- W3048747054 countsByYear W30487470542020 @default.
- W3048747054 countsByYear W30487470542021 @default.
- W3048747054 countsByYear W30487470542022 @default.
- W3048747054 crossrefType "journal-article" @default.
- W3048747054 hasAuthorship W3048747054A5017013518 @default.
- W3048747054 hasAuthorship W3048747054A5079669513 @default.
- W3048747054 hasBestOaLocation W30487470541 @default.
- W3048747054 hasConcept C13280743 @default.