Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048752751> ?p ?o ?g. }
- W3048752751 endingPage "644" @default.
- W3048752751 startingPage "637" @default.
- W3048752751 abstract "Abstract. In this paper we describe a new multi-sensor platform for data collection and algorithm testing. We propose a couple of methods for solution of semantic scene understanding problem for land autonomous vehicles. We describe our approaches for automatic camera and LiDAR calibration; three-dimensional scene reconstruction and odometry calculation; semantic segmentation that provides obstacle recognition and underlying surface classification; object detection; point cloud segmentation. Also, we describe our virtual simulation complex based on Unreal Engine, that can be used for both data collection and algorithm testing. We collected a large database of field and virtual data: more than 1,000,000 real images with corresponding LiDAR data and more than 3,500,000 simulated images with corresponding LiDAR data. All proposed methods were implemented and tested on our autonomous platform; accuracy estimates were obtained on the collected database." @default.
- W3048752751 created "2020-08-18" @default.
- W3048752751 creator A5001704344 @default.
- W3048752751 creator A5010142830 @default.
- W3048752751 creator A5020651094 @default.
- W3048752751 creator A5021076647 @default.
- W3048752751 creator A5025368848 @default.
- W3048752751 creator A5033981513 @default.
- W3048752751 creator A5034918796 @default.
- W3048752751 creator A5039886740 @default.
- W3048752751 creator A5053022018 @default.
- W3048752751 creator A5077758787 @default.
- W3048752751 creator A5088316564 @default.
- W3048752751 date "2020-08-12" @default.
- W3048752751 modified "2023-10-18" @default.
- W3048752751 title "SEMANTIC SCENE UNDERSTANDING FOR THE AUTONOMOUS PLATFORM" @default.
- W3048752751 cites W1901129140 @default.
- W3048752751 cites W1994349244 @default.
- W3048752751 cites W2017088761 @default.
- W3048752751 cites W2085261163 @default.
- W3048752751 cites W2334562993 @default.
- W3048752751 cites W2412716960 @default.
- W3048752751 cites W2612827728 @default.
- W3048752751 cites W2790381683 @default.
- W3048752751 cites W2796438033 @default.
- W3048752751 cites W2804488433 @default.
- W3048752751 cites W2807785345 @default.
- W3048752751 cites W2949650786 @default.
- W3048752751 cites W2952865063 @default.
- W3048752751 cites W2953139137 @default.
- W3048752751 cites W2963604034 @default.
- W3048752751 doi "https://doi.org/10.5194/isprs-archives-xliii-b2-2020-637-2020" @default.
- W3048752751 hasPublicationYear "2020" @default.
- W3048752751 type Work @default.
- W3048752751 sameAs 3048752751 @default.
- W3048752751 citedByCount "3" @default.
- W3048752751 countsByYear W30487527512021 @default.
- W3048752751 countsByYear W30487527512022 @default.
- W3048752751 crossrefType "journal-article" @default.
- W3048752751 hasAuthorship W3048752751A5001704344 @default.
- W3048752751 hasAuthorship W3048752751A5010142830 @default.
- W3048752751 hasAuthorship W3048752751A5020651094 @default.
- W3048752751 hasAuthorship W3048752751A5021076647 @default.
- W3048752751 hasAuthorship W3048752751A5025368848 @default.
- W3048752751 hasAuthorship W3048752751A5033981513 @default.
- W3048752751 hasAuthorship W3048752751A5034918796 @default.
- W3048752751 hasAuthorship W3048752751A5039886740 @default.
- W3048752751 hasAuthorship W3048752751A5053022018 @default.
- W3048752751 hasAuthorship W3048752751A5077758787 @default.
- W3048752751 hasAuthorship W3048752751A5088316564 @default.
- W3048752751 hasBestOaLocation W30487527511 @default.
- W3048752751 hasConcept C131979681 @default.
- W3048752751 hasConcept C154945302 @default.
- W3048752751 hasConcept C166957645 @default.
- W3048752751 hasConcept C19966478 @default.
- W3048752751 hasConcept C202444582 @default.
- W3048752751 hasConcept C205649164 @default.
- W3048752751 hasConcept C2776650193 @default.
- W3048752751 hasConcept C2781238097 @default.
- W3048752751 hasConcept C31972630 @default.
- W3048752751 hasConcept C33923547 @default.
- W3048752751 hasConcept C41008148 @default.
- W3048752751 hasConcept C49441653 @default.
- W3048752751 hasConcept C51399673 @default.
- W3048752751 hasConcept C62649853 @default.
- W3048752751 hasConcept C89600930 @default.
- W3048752751 hasConcept C90509273 @default.
- W3048752751 hasConcept C9652623 @default.
- W3048752751 hasConceptScore W3048752751C131979681 @default.
- W3048752751 hasConceptScore W3048752751C154945302 @default.
- W3048752751 hasConceptScore W3048752751C166957645 @default.
- W3048752751 hasConceptScore W3048752751C19966478 @default.
- W3048752751 hasConceptScore W3048752751C202444582 @default.
- W3048752751 hasConceptScore W3048752751C205649164 @default.
- W3048752751 hasConceptScore W3048752751C2776650193 @default.
- W3048752751 hasConceptScore W3048752751C2781238097 @default.
- W3048752751 hasConceptScore W3048752751C31972630 @default.
- W3048752751 hasConceptScore W3048752751C33923547 @default.
- W3048752751 hasConceptScore W3048752751C41008148 @default.
- W3048752751 hasConceptScore W3048752751C49441653 @default.
- W3048752751 hasConceptScore W3048752751C51399673 @default.
- W3048752751 hasConceptScore W3048752751C62649853 @default.
- W3048752751 hasConceptScore W3048752751C89600930 @default.
- W3048752751 hasConceptScore W3048752751C90509273 @default.
- W3048752751 hasConceptScore W3048752751C9652623 @default.
- W3048752751 hasLocation W30487527511 @default.
- W3048752751 hasLocation W30487527512 @default.
- W3048752751 hasOpenAccess W3048752751 @default.
- W3048752751 hasPrimaryLocation W30487527511 @default.
- W3048752751 hasRelatedWork W1963494852 @default.
- W3048752751 hasRelatedWork W2004370856 @default.
- W3048752751 hasRelatedWork W2019566805 @default.
- W3048752751 hasRelatedWork W2383464976 @default.
- W3048752751 hasRelatedWork W2523902292 @default.
- W3048752751 hasRelatedWork W3004168946 @default.
- W3048752751 hasRelatedWork W3108490186 @default.
- W3048752751 hasRelatedWork W3126684080 @default.
- W3048752751 hasRelatedWork W4377833916 @default.