Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048753330> ?p ?o ?g. }
- W3048753330 endingPage "1117" @default.
- W3048753330 startingPage "1090" @default.
- W3048753330 abstract "Feedback particle filter (FPF) is a numerical algorithm to approximate the solution of the nonlinear filtering problem in continuous-time settings. In any numerical implementation of the FPF algorithm, the main challenge is to numerically approximate the so-called gain function. A numerical algorithm for gain function approximation is the subject of this paper. The exact gain function is the solution of a Poisson equation involving a probability-weighted Laplacian $Delta_rho$. The numerical problem is to approximate this solution using only finitely many particles sampled from the probability distribution $rho$. A diffusion map-based algorithm was proposed by the authors in prior works [A. Taghvaei and P. G. Mehta, Gain function approximation in the feedback particle filter, in 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, 2016, pp. 5446--5452], [A. Taghvaei, P. G. Mehta, and S. P. Meyn, Error estimates for the kernel gain function approximation in the feedback particle filter, in American Control Conference (ACC), IEEE, 2017, pp. 4576--4582] to solve this problem. The algorithm is named as such because it involves, as an intermediate step, a diffusion map approximation of the exact semigroup $e^{Delta_rho}$. The original contribution of this paper is to carry out a rigorous error analysis of the diffusion map-based algorithm. The error is shown to include two components: bias and variance. The bias results from the diffusion map approximation of the exact semigroup. The variance arises because of finite sample size. Scalings and upper bounds are derived for bias and variance. These bounds are then illustrated with numerical experiments that serve to emphasize the effects of problem dimension and sample size. The proposed algorithm is applied to two filtering examples and comparisons provided with the sequential importance resampling (SIR) particle filter." @default.
- W3048753330 created "2020-08-18" @default.
- W3048753330 creator A5035589000 @default.
- W3048753330 creator A5047988825 @default.
- W3048753330 creator A5081314418 @default.
- W3048753330 date "2020-01-01" @default.
- W3048753330 modified "2023-10-16" @default.
- W3048753330 title "Diffusion Map-based Algorithm for Gain Function Approximation in the Feedback Particle Filter" @default.
- W3048753330 cites W1858982327 @default.
- W3048753330 cites W1965119649 @default.
- W3048753330 cites W1966428296 @default.
- W3048753330 cites W1984032850 @default.
- W3048753330 cites W1992747726 @default.
- W3048753330 cites W2002276939 @default.
- W3048753330 cites W2003268963 @default.
- W3048753330 cites W2004247736 @default.
- W3048753330 cites W2005874252 @default.
- W3048753330 cites W2022238100 @default.
- W3048753330 cites W2022478817 @default.
- W3048753330 cites W2023103251 @default.
- W3048753330 cites W2058490559 @default.
- W3048753330 cites W2062494993 @default.
- W3048753330 cites W2071044179 @default.
- W3048753330 cites W2083402998 @default.
- W3048753330 cites W2086211266 @default.
- W3048753330 cites W2098613108 @default.
- W3048753330 cites W2110097348 @default.
- W3048753330 cites W2132914434 @default.
- W3048753330 cites W2157098139 @default.
- W3048753330 cites W2571463739 @default.
- W3048753330 cites W2606152085 @default.
- W3048753330 cites W2609924459 @default.
- W3048753330 cites W2964163851 @default.
- W3048753330 cites W2964170546 @default.
- W3048753330 cites W3102232514 @default.
- W3048753330 cites W4213367101 @default.
- W3048753330 doi "https://doi.org/10.1137/19m124513x" @default.
- W3048753330 hasPublicationYear "2020" @default.
- W3048753330 type Work @default.
- W3048753330 sameAs 3048753330 @default.
- W3048753330 citedByCount "20" @default.
- W3048753330 countsByYear W30487533302020 @default.
- W3048753330 countsByYear W30487533302021 @default.
- W3048753330 countsByYear W30487533302022 @default.
- W3048753330 countsByYear W30487533302023 @default.
- W3048753330 crossrefType "journal-article" @default.
- W3048753330 hasAuthorship W3048753330A5035589000 @default.
- W3048753330 hasAuthorship W3048753330A5047988825 @default.
- W3048753330 hasAuthorship W3048753330A5081314418 @default.
- W3048753330 hasBestOaLocation W30487533302 @default.
- W3048753330 hasConcept C106131492 @default.
- W3048753330 hasConcept C11413529 @default.
- W3048753330 hasConcept C119857082 @default.
- W3048753330 hasConcept C121332964 @default.
- W3048753330 hasConcept C122383733 @default.
- W3048753330 hasConcept C134306372 @default.
- W3048753330 hasConcept C14036430 @default.
- W3048753330 hasConcept C145242015 @default.
- W3048753330 hasConcept C148764684 @default.
- W3048753330 hasConcept C28826006 @default.
- W3048753330 hasConcept C31972630 @default.
- W3048753330 hasConcept C33923547 @default.
- W3048753330 hasConcept C41008148 @default.
- W3048753330 hasConcept C50644808 @default.
- W3048753330 hasConcept C69357855 @default.
- W3048753330 hasConcept C78458016 @default.
- W3048753330 hasConcept C86803240 @default.
- W3048753330 hasConcept C91873725 @default.
- W3048753330 hasConcept C97355855 @default.
- W3048753330 hasConceptScore W3048753330C106131492 @default.
- W3048753330 hasConceptScore W3048753330C11413529 @default.
- W3048753330 hasConceptScore W3048753330C119857082 @default.
- W3048753330 hasConceptScore W3048753330C121332964 @default.
- W3048753330 hasConceptScore W3048753330C122383733 @default.
- W3048753330 hasConceptScore W3048753330C134306372 @default.
- W3048753330 hasConceptScore W3048753330C14036430 @default.
- W3048753330 hasConceptScore W3048753330C145242015 @default.
- W3048753330 hasConceptScore W3048753330C148764684 @default.
- W3048753330 hasConceptScore W3048753330C28826006 @default.
- W3048753330 hasConceptScore W3048753330C31972630 @default.
- W3048753330 hasConceptScore W3048753330C33923547 @default.
- W3048753330 hasConceptScore W3048753330C41008148 @default.
- W3048753330 hasConceptScore W3048753330C50644808 @default.
- W3048753330 hasConceptScore W3048753330C69357855 @default.
- W3048753330 hasConceptScore W3048753330C78458016 @default.
- W3048753330 hasConceptScore W3048753330C86803240 @default.
- W3048753330 hasConceptScore W3048753330C91873725 @default.
- W3048753330 hasConceptScore W3048753330C97355855 @default.
- W3048753330 hasFunder F4320337391 @default.
- W3048753330 hasFunder F4320338281 @default.
- W3048753330 hasIssue "3" @default.
- W3048753330 hasLocation W30487533301 @default.
- W3048753330 hasLocation W30487533302 @default.
- W3048753330 hasOpenAccess W3048753330 @default.
- W3048753330 hasPrimaryLocation W30487533301 @default.
- W3048753330 hasRelatedWork W189995875 @default.
- W3048753330 hasRelatedWork W2093585199 @default.
- W3048753330 hasRelatedWork W2171221472 @default.