Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048759882> ?p ?o ?g. }
- W3048759882 abstract "We give a unified treatment of dispersive sum rules for four-point correlators in conformal field theory. We call a sum rule dispersive if it has double zeros at all double-twist operators above a fixed twist gap. Dispersive sum rules have their conceptual origin in Lorentzian kinematics and absorptive physics (the notion of double discontinuity). They have been discussed using three seemingly different methods: analytic functionals dual to double-twist operators, dispersion relations in position space, and dispersion relations in Mellin space. We show that these three approaches can be mapped into one another and lead to completely equivalent sum rules. A central idea of our discussion is a fully nonperturbative expansion of the correlator as a sum over Polyakov-Regge blocks. Unlike the usual OPE sum, the Polyakov-Regge expansion utilizes the data of two separate channels, while having (term by term) good Regge behavior in the third channel. We construct sum rules which are non-negative above the double-twist gap; they have the physical interpretation of a subtracted version of superconvergence sum rules. We expect dispersive sum rules to be a very useful tool to study expansions around mean-field theory, and to constrain the low-energy description of holographic CFTs with a large gap. We give examples of the first kind of applications, notably, we exhibit a candidate extremal functional for the spin-two gap problem." @default.
- W3048759882 created "2020-08-18" @default.
- W3048759882 creator A5008517051 @default.
- W3048759882 creator A5034700612 @default.
- W3048759882 creator A5058380930 @default.
- W3048759882 creator A5063048070 @default.
- W3048759882 date "2020-08-11" @default.
- W3048759882 modified "2023-09-23" @default.
- W3048759882 title "Dispersive CFT Sum Rules" @default.
- W3048759882 cites W1631345926 @default.
- W3048759882 cites W1645449891 @default.
- W3048759882 cites W1659048023 @default.
- W3048759882 cites W1827400607 @default.
- W3048759882 cites W1985777033 @default.
- W3048759882 cites W1985985717 @default.
- W3048759882 cites W2010931423 @default.
- W3048759882 cites W2016208635 @default.
- W3048759882 cites W2064246484 @default.
- W3048759882 cites W2088210826 @default.
- W3048759882 cites W2093417127 @default.
- W3048759882 cites W2116851457 @default.
- W3048759882 cites W2118301480 @default.
- W3048759882 cites W2119557169 @default.
- W3048759882 cites W2124927563 @default.
- W3048759882 cites W2140989671 @default.
- W3048759882 cites W2144658339 @default.
- W3048759882 cites W2176222857 @default.
- W3048759882 cites W2245814237 @default.
- W3048759882 cites W2334092212 @default.
- W3048759882 cites W2343435158 @default.
- W3048759882 cites W2417476433 @default.
- W3048759882 cites W2518160150 @default.
- W3048759882 cites W2532366641 @default.
- W3048759882 cites W2550675050 @default.
- W3048759882 cites W2557256257 @default.
- W3048759882 cites W2558826532 @default.
- W3048759882 cites W2586780857 @default.
- W3048759882 cites W2592138341 @default.
- W3048759882 cites W2807652398 @default.
- W3048759882 cites W2893915287 @default.
- W3048759882 cites W2922321399 @default.
- W3048759882 cites W2928131043 @default.
- W3048759882 cites W2956333830 @default.
- W3048759882 cites W2974519613 @default.
- W3048759882 cites W2975778755 @default.
- W3048759882 cites W2980534990 @default.
- W3048759882 cites W2981480293 @default.
- W3048759882 cites W2981923044 @default.
- W3048759882 cites W2983279275 @default.
- W3048759882 cites W2988438431 @default.
- W3048759882 cites W3011787950 @default.
- W3048759882 cites W3019447442 @default.
- W3048759882 cites W3023315189 @default.
- W3048759882 cites W3032854929 @default.
- W3048759882 cites W3042501131 @default.
- W3048759882 cites W3043402939 @default.
- W3048759882 cites W3045021572 @default.
- W3048759882 cites W3098823392 @default.
- W3048759882 cites W3098929219 @default.
- W3048759882 cites W3099114005 @default.
- W3048759882 cites W3099124517 @default.
- W3048759882 cites W3099385280 @default.
- W3048759882 cites W3099654439 @default.
- W3048759882 cites W3099696675 @default.
- W3048759882 cites W3099740074 @default.
- W3048759882 cites W3099875126 @default.
- W3048759882 cites W3099996768 @default.
- W3048759882 cites W3102431374 @default.
- W3048759882 cites W3102461564 @default.
- W3048759882 cites W3102507753 @default.
- W3048759882 cites W3103508715 @default.
- W3048759882 cites W3104384857 @default.
- W3048759882 cites W3105354310 @default.
- W3048759882 cites W3105376269 @default.
- W3048759882 cites W3106232483 @default.
- W3048759882 cites W3106317376 @default.
- W3048759882 cites W3106380691 @default.
- W3048759882 cites W3106458403 @default.
- W3048759882 cites W3111535472 @default.
- W3048759882 cites W3122516847 @default.
- W3048759882 cites W3125902885 @default.
- W3048759882 cites W3164525213 @default.
- W3048759882 cites W3172983137 @default.
- W3048759882 cites W3176435282 @default.
- W3048759882 hasPublicationYear "2020" @default.
- W3048759882 type Work @default.
- W3048759882 sameAs 3048759882 @default.
- W3048759882 citedByCount "0" @default.
- W3048759882 crossrefType "posted-content" @default.
- W3048759882 hasAuthorship W3048759882A5008517051 @default.
- W3048759882 hasAuthorship W3048759882A5034700612 @default.
- W3048759882 hasAuthorship W3048759882A5058380930 @default.
- W3048759882 hasAuthorship W3048759882A5063048070 @default.
- W3048759882 hasConcept C111919701 @default.
- W3048759882 hasConcept C117137515 @default.
- W3048759882 hasConcept C121332964 @default.
- W3048759882 hasConcept C134306372 @default.
- W3048759882 hasConcept C18199665 @default.
- W3048759882 hasConcept C199360897 @default.
- W3048759882 hasConcept C202444582 @default.