Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048778617> ?p ?o ?g. }
- W3048778617 endingPage "148369" @default.
- W3048778617 startingPage "148357" @default.
- W3048778617 abstract "Because conventional PCANET approach is that the conventional PCANET performs the PCA for all the segments of all the training pixel vectors, and this does not capture the difference between different segments of the same training pixel vectors, classification accuracy is not high. This paper proposes to employ a regional principal component analysis network with the rolling guidance filter (RPCANET_RGF) for performing the hyperspectral image (HSI) classification with few training samples. Regional principal component analysis network (RPCANET) proposed in this paper performs the PCA for each segment of all training pixel vectors. Besides, the rolling guidance filter (RGF) is used to remove the spatial noise and to enhance the edges of the HSIs. Different from the conventional convolutional neural networks (CNNs), the coefficients of the filters are obtained by performing the principal component analysis (PCA) on the regional segments of HSIs. This approach is also different from the conventional principal component analysis network (PCANET). Here, different segments of the same pixel image are processed by different Filters. Since the RPCANET_RGF is a general learning method that obtains the filter coefficients directly from the HSIs, the back propagation based training is not required. Hence, the RPCANET_RGF requires a less computational power for performing the training compared to the CNN. Besides, as the RPCANET_RGF can make use of both the spectral information and the spatial information for performing the classification, the computer numerical simulation results show that the classification accuracy achieved by the RPCANET_RGF is higher than that by the conventional PCANET and other state of the art methods." @default.
- W3048778617 created "2020-08-18" @default.
- W3048778617 creator A5020600497 @default.
- W3048778617 creator A5022036826 @default.
- W3048778617 creator A5028112215 @default.
- W3048778617 creator A5080271103 @default.
- W3048778617 date "2020-01-01" @default.
- W3048778617 modified "2023-10-17" @default.
- W3048778617 title "Regional Principal Component Analysis Network With the Rolling Guidance Filter for Classifying the Hyperspectral Images" @default.
- W3048778617 cites W1799946925 @default.
- W3048778617 cites W1977355761 @default.
- W3048778617 cites W1979730959 @default.
- W3048778617 cites W2001298023 @default.
- W3048778617 cites W2008277111 @default.
- W3048778617 cites W2009286595 @default.
- W3048778617 cites W2019188302 @default.
- W3048778617 cites W2026131661 @default.
- W3048778617 cites W2030080631 @default.
- W3048778617 cites W2041100636 @default.
- W3048778617 cites W2044184146 @default.
- W3048778617 cites W2053186076 @default.
- W3048778617 cites W2059110141 @default.
- W3048778617 cites W2069959554 @default.
- W3048778617 cites W2072187267 @default.
- W3048778617 cites W2097308346 @default.
- W3048778617 cites W2112796928 @default.
- W3048778617 cites W2113464037 @default.
- W3048778617 cites W2118945875 @default.
- W3048778617 cites W2149414429 @default.
- W3048778617 cites W2153635508 @default.
- W3048778617 cites W2166923144 @default.
- W3048778617 cites W2168880067 @default.
- W3048778617 cites W2169415915 @default.
- W3048778617 cites W2312493675 @default.
- W3048778617 cites W2471678645 @default.
- W3048778617 cites W2527419569 @default.
- W3048778617 cites W2546302380 @default.
- W3048778617 cites W2589232018 @default.
- W3048778617 cites W2598997103 @default.
- W3048778617 cites W2607881524 @default.
- W3048778617 cites W2742141965 @default.
- W3048778617 cites W2766988648 @default.
- W3048778617 cites W2801324747 @default.
- W3048778617 cites W2900663851 @default.
- W3048778617 cites W2965799366 @default.
- W3048778617 cites W2972505576 @default.
- W3048778617 cites W2977961330 @default.
- W3048778617 cites W3003326148 @default.
- W3048778617 cites W3102431071 @default.
- W3048778617 cites W3105243393 @default.
- W3048778617 doi "https://doi.org/10.1109/access.2020.3016171" @default.
- W3048778617 hasPublicationYear "2020" @default.
- W3048778617 type Work @default.
- W3048778617 sameAs 3048778617 @default.
- W3048778617 citedByCount "3" @default.
- W3048778617 countsByYear W30487786172023 @default.
- W3048778617 crossrefType "journal-article" @default.
- W3048778617 hasAuthorship W3048778617A5020600497 @default.
- W3048778617 hasAuthorship W3048778617A5022036826 @default.
- W3048778617 hasAuthorship W3048778617A5028112215 @default.
- W3048778617 hasAuthorship W3048778617A5080271103 @default.
- W3048778617 hasBestOaLocation W30487786171 @default.
- W3048778617 hasConcept C106131492 @default.
- W3048778617 hasConcept C153180895 @default.
- W3048778617 hasConcept C154945302 @default.
- W3048778617 hasConcept C155032097 @default.
- W3048778617 hasConcept C159078339 @default.
- W3048778617 hasConcept C160633673 @default.
- W3048778617 hasConcept C27438332 @default.
- W3048778617 hasConcept C31972630 @default.
- W3048778617 hasConcept C41008148 @default.
- W3048778617 hasConcept C50644808 @default.
- W3048778617 hasConceptScore W3048778617C106131492 @default.
- W3048778617 hasConceptScore W3048778617C153180895 @default.
- W3048778617 hasConceptScore W3048778617C154945302 @default.
- W3048778617 hasConceptScore W3048778617C155032097 @default.
- W3048778617 hasConceptScore W3048778617C159078339 @default.
- W3048778617 hasConceptScore W3048778617C160633673 @default.
- W3048778617 hasConceptScore W3048778617C27438332 @default.
- W3048778617 hasConceptScore W3048778617C31972630 @default.
- W3048778617 hasConceptScore W3048778617C41008148 @default.
- W3048778617 hasConceptScore W3048778617C50644808 @default.
- W3048778617 hasFunder F4320321001 @default.
- W3048778617 hasFunder F4320321920 @default.
- W3048778617 hasLocation W30487786171 @default.
- W3048778617 hasOpenAccess W3048778617 @default.
- W3048778617 hasPrimaryLocation W30487786171 @default.
- W3048778617 hasRelatedWork W1585144779 @default.
- W3048778617 hasRelatedWork W2035375085 @default.
- W3048778617 hasRelatedWork W2114449385 @default.
- W3048778617 hasRelatedWork W2117111850 @default.
- W3048778617 hasRelatedWork W2142308737 @default.
- W3048778617 hasRelatedWork W2380927352 @default.
- W3048778617 hasRelatedWork W3034655717 @default.
- W3048778617 hasRelatedWork W3081910372 @default.
- W3048778617 hasRelatedWork W3097030804 @default.
- W3048778617 hasRelatedWork W3154145980 @default.
- W3048778617 hasVolume "8" @default.