Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048779301> ?p ?o ?g. }
- W3048779301 endingPage "e0236392" @default.
- W3048779301 startingPage "e0236392" @default.
- W3048779301 abstract "In clinical trials, animal and cell line models are often used to evaluate the potential toxic effects of a novel compound or candidate drug before progressing to human trials. However, relating the results of animal and in vitro model exposures to relevant clinical outcomes in the human in vivo system still proves challenging, relying on often putative orthologs. In recent years, multiple studies have demonstrated that the repeated dose rodent bioassay, the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting toxic effects of pharmaceuticals in humans. In this study, we evaluate the potential of deep learning techniques to translate the pattern of gene expression measured following an exposure in rodents to humans, circumventing the current reliance on orthologs, and also from in vitro to in vivo experimental designs. Of the applied deep learning architectures applied in this study the convolutional neural network (CNN) and a deep artificial neural network with bottleneck architecture significantly outperform classical machine learning techniques in predicting the time series of gene expression in primary human hepatocytes given a measured time series of gene expression from primary rat hepatocytes following exposure in vitro to a previously unseen compound across multiple toxicologically relevant gene sets. With a reduction in average mean absolute error across 76 genes that have been shown to be predictive for identifying carcinogenicity from 0.0172 for a random regression forest to 0.0166 for the CNN model (p < 0.05). These deep learning architecture also perform well when applied to predict time series of in vivo gene expression given measured time series of in vitro gene expression for rats." @default.
- W3048779301 created "2020-08-18" @default.
- W3048779301 creator A5002817190 @default.
- W3048779301 creator A5008825707 @default.
- W3048779301 creator A5018547776 @default.
- W3048779301 creator A5018866071 @default.
- W3048779301 creator A5028042425 @default.
- W3048779301 creator A5038218119 @default.
- W3048779301 creator A5039983826 @default.
- W3048779301 creator A5040295203 @default.
- W3048779301 creator A5055891033 @default.
- W3048779301 creator A5058509463 @default.
- W3048779301 creator A5068852163 @default.
- W3048779301 creator A5072748271 @default.
- W3048779301 creator A5073937073 @default.
- W3048779301 creator A5082614669 @default.
- W3048779301 creator A5083218466 @default.
- W3048779301 date "2020-08-11" @default.
- W3048779301 modified "2023-09-27" @default.
- W3048779301 title "Use of deep learning methods to translate drug-induced gene expression changes from rat to human primary hepatocytes" @default.
- W3048779301 cites W1498436455 @default.
- W3048779301 cites W1971014294 @default.
- W3048779301 cites W1985372480 @default.
- W3048779301 cites W1986393208 @default.
- W3048779301 cites W1991019646 @default.
- W3048779301 cites W1996202645 @default.
- W3048779301 cites W1998661806 @default.
- W3048779301 cites W2003562853 @default.
- W3048779301 cites W2009330082 @default.
- W3048779301 cites W2020106098 @default.
- W3048779301 cites W2032325250 @default.
- W3048779301 cites W2040309998 @default.
- W3048779301 cites W2055067135 @default.
- W3048779301 cites W2095853592 @default.
- W3048779301 cites W2099536383 @default.
- W3048779301 cites W2100495367 @default.
- W3048779301 cites W2101926813 @default.
- W3048779301 cites W2102434679 @default.
- W3048779301 cites W2103212315 @default.
- W3048779301 cites W2122111042 @default.
- W3048779301 cites W2122538988 @default.
- W3048779301 cites W2125972803 @default.
- W3048779301 cites W2153238893 @default.
- W3048779301 cites W2154731450 @default.
- W3048779301 cites W2155494853 @default.
- W3048779301 cites W2158598546 @default.
- W3048779301 cites W2234529989 @default.
- W3048779301 cites W2264017649 @default.
- W3048779301 cites W2397757171 @default.
- W3048779301 cites W2479945688 @default.
- W3048779301 cites W2502949459 @default.
- W3048779301 cites W2537229885 @default.
- W3048779301 cites W2757404954 @default.
- W3048779301 cites W2911964244 @default.
- W3048779301 cites W2913611220 @default.
- W3048779301 cites W2914415092 @default.
- W3048779301 cites W2918544128 @default.
- W3048779301 cites W2919115771 @default.
- W3048779301 cites W2945183595 @default.
- W3048779301 cites W2951232102 @default.
- W3048779301 cites W2955754489 @default.
- W3048779301 cites W2966115457 @default.
- W3048779301 cites W2996140569 @default.
- W3048779301 cites W3103722956 @default.
- W3048779301 cites W84805701 @default.
- W3048779301 doi "https://doi.org/10.1371/journal.pone.0236392" @default.
- W3048779301 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7418976" @default.
- W3048779301 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32780735" @default.
- W3048779301 hasPublicationYear "2020" @default.
- W3048779301 type Work @default.
- W3048779301 sameAs 3048779301 @default.
- W3048779301 citedByCount "1" @default.
- W3048779301 countsByYear W30487793012022 @default.
- W3048779301 crossrefType "journal-article" @default.
- W3048779301 hasAuthorship W3048779301A5002817190 @default.
- W3048779301 hasAuthorship W3048779301A5008825707 @default.
- W3048779301 hasAuthorship W3048779301A5018547776 @default.
- W3048779301 hasAuthorship W3048779301A5018866071 @default.
- W3048779301 hasAuthorship W3048779301A5028042425 @default.
- W3048779301 hasAuthorship W3048779301A5038218119 @default.
- W3048779301 hasAuthorship W3048779301A5039983826 @default.
- W3048779301 hasAuthorship W3048779301A5040295203 @default.
- W3048779301 hasAuthorship W3048779301A5055891033 @default.
- W3048779301 hasAuthorship W3048779301A5058509463 @default.
- W3048779301 hasAuthorship W3048779301A5068852163 @default.
- W3048779301 hasAuthorship W3048779301A5072748271 @default.
- W3048779301 hasAuthorship W3048779301A5073937073 @default.
- W3048779301 hasAuthorship W3048779301A5082614669 @default.
- W3048779301 hasAuthorship W3048779301A5083218466 @default.
- W3048779301 hasBestOaLocation W30487793011 @default.
- W3048779301 hasConcept C104317684 @default.
- W3048779301 hasConcept C105795698 @default.
- W3048779301 hasConcept C108583219 @default.
- W3048779301 hasConcept C119857082 @default.
- W3048779301 hasConcept C149635348 @default.
- W3048779301 hasConcept C150194340 @default.
- W3048779301 hasConcept C154945302 @default.
- W3048779301 hasConcept C169258074 @default.