Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048790884> ?p ?o ?g. }
- W3048790884 endingPage "3035" @default.
- W3048790884 startingPage "3019" @default.
- W3048790884 abstract "Purpose Data mining algorithms using electronic health records (EHRs) are useful in large-scale population-wide studies to classify etiology and comorbidities ( Casey et al., 2016 ). Here, we apply this approach to developmental language disorder (DLD), a prevalent communication disorder whose risk factors and epidemiology remain largely undiscovered. Method We first created a reliable system for manually identifying DLD in EHRs based on speech-language pathologist (SLP) diagnostic expertise. We then developed and validated an automated algorithmic procedure, called, Automated Phenotyping Tool for identifying DLD cases in health systems data (APT-DLD), that classifies a DLD status for patients within EHRs on the basis of ICD (International Statistical Classification of Diseases and Related Health Problems) codes. APT-DLD was validated in a discovery sample ( N = 973) using expert SLP manual phenotype coding as a gold-standard comparison and then applied and further validated in a replication sample of N = 13,652 EHRs. Results In the discovery sample, the APT-DLD algorithm correctly classified 98% (concordance) of DLD cases in concordance with manually coded records in the training set, indicating that APT-DLD successfully mimics a comprehensive chart review. The output of APT-DLD was also validated in relation to independently conducted SLP clinician coding in a subset of records, with a positive predictive value of 95% of cases correctly classified as DLD. We also applied APT-DLD to the replication sample, where it achieved a positive predictive value of 90% in relation to SLP clinician classification of DLD. Conclusions APT-DLD is a reliable, valid, and scalable tool for identifying DLD cohorts in EHRs. This new method has promising public health implications for future large-scale epidemiological investigations of DLD and may inform EHR data mining algorithms for other communication disorders. Supplemental Material https://doi.org/10.23641/asha.12753578" @default.
- W3048790884 created "2020-08-18" @default.
- W3048790884 creator A5028714205 @default.
- W3048790884 creator A5029378698 @default.
- W3048790884 creator A5036388273 @default.
- W3048790884 creator A5045051798 @default.
- W3048790884 creator A5045095514 @default.
- W3048790884 creator A5049695581 @default.
- W3048790884 creator A5068301264 @default.
- W3048790884 creator A5072522716 @default.
- W3048790884 creator A5075655945 @default.
- W3048790884 creator A5087640226 @default.
- W3048790884 creator A5087837068 @default.
- W3048790884 date "2020-09-15" @default.
- W3048790884 modified "2023-09-26" @default.
- W3048790884 title "Automated Phenotyping Tool for Identifying Developmental Language Disorder Cases in Health Systems Data (APT-DLD): A New Research Algorithm for Deployment in Large-Scale Electronic Health Record Systems" @default.
- W3048790884 cites W1816688868 @default.
- W3048790884 cites W1818249031 @default.
- W3048790884 cites W1891689427 @default.
- W3048790884 cites W1965148138 @default.
- W3048790884 cites W1970388688 @default.
- W3048790884 cites W1974971068 @default.
- W3048790884 cites W1977639142 @default.
- W3048790884 cites W1992601183 @default.
- W3048790884 cites W2001082581 @default.
- W3048790884 cites W2013378169 @default.
- W3048790884 cites W2039135009 @default.
- W3048790884 cites W2073871158 @default.
- W3048790884 cites W2074669617 @default.
- W3048790884 cites W2084081794 @default.
- W3048790884 cites W2090266626 @default.
- W3048790884 cites W2109497346 @default.
- W3048790884 cites W2112222636 @default.
- W3048790884 cites W2134725489 @default.
- W3048790884 cites W2140302476 @default.
- W3048790884 cites W2148060115 @default.
- W3048790884 cites W2157636311 @default.
- W3048790884 cites W2161544826 @default.
- W3048790884 cites W2161984003 @default.
- W3048790884 cites W2165680991 @default.
- W3048790884 cites W2165865480 @default.
- W3048790884 cites W2171090657 @default.
- W3048790884 cites W2323779287 @default.
- W3048790884 cites W2336526731 @default.
- W3048790884 cites W2337809374 @default.
- W3048790884 cites W2346083662 @default.
- W3048790884 cites W2397667852 @default.
- W3048790884 cites W2467651252 @default.
- W3048790884 cites W2483044574 @default.
- W3048790884 cites W2483963880 @default.
- W3048790884 cites W2488962145 @default.
- W3048790884 cites W2510311803 @default.
- W3048790884 cites W2516351633 @default.
- W3048790884 cites W2552268835 @default.
- W3048790884 cites W2563952521 @default.
- W3048790884 cites W2599350544 @default.
- W3048790884 cites W2606287704 @default.
- W3048790884 cites W2617083299 @default.
- W3048790884 cites W2621205190 @default.
- W3048790884 cites W2735499801 @default.
- W3048790884 cites W2737308720 @default.
- W3048790884 cites W2738535996 @default.
- W3048790884 cites W2742728501 @default.
- W3048790884 cites W2755487781 @default.
- W3048790884 cites W2759607688 @default.
- W3048790884 cites W2764357296 @default.
- W3048790884 cites W2766919434 @default.
- W3048790884 cites W2786384427 @default.
- W3048790884 cites W2789472937 @default.
- W3048790884 cites W2792082629 @default.
- W3048790884 cites W2799416602 @default.
- W3048790884 cites W2803079066 @default.
- W3048790884 cites W2803303271 @default.
- W3048790884 cites W2829251220 @default.
- W3048790884 cites W2892799967 @default.
- W3048790884 cites W2897335499 @default.
- W3048790884 cites W2901701202 @default.
- W3048790884 cites W2902906365 @default.
- W3048790884 cites W2903101439 @default.
- W3048790884 cites W2944222458 @default.
- W3048790884 cites W2949482713 @default.
- W3048790884 cites W2955927465 @default.
- W3048790884 cites W3006986200 @default.
- W3048790884 cites W87695707 @default.
- W3048790884 doi "https://doi.org/10.1044/2020_jslhr-19-00397" @default.
- W3048790884 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7890229" @default.
- W3048790884 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32791019" @default.
- W3048790884 hasPublicationYear "2020" @default.
- W3048790884 type Work @default.
- W3048790884 sameAs 3048790884 @default.
- W3048790884 citedByCount "6" @default.
- W3048790884 countsByYear W30487908842021 @default.
- W3048790884 countsByYear W30487908842022 @default.
- W3048790884 countsByYear W30487908842023 @default.
- W3048790884 crossrefType "journal-article" @default.
- W3048790884 hasAuthorship W3048790884A5028714205 @default.
- W3048790884 hasAuthorship W3048790884A5029378698 @default.
- W3048790884 hasAuthorship W3048790884A5036388273 @default.