Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048794210> ?p ?o ?g. }
- W3048794210 endingPage "1473" @default.
- W3048794210 startingPage "1457" @default.
- W3048794210 abstract "Multispectral and hyperspectral image fusion (MS/HS fusion) aims to fuse a high-resolution multispectral (HrMS) and a low-resolution hyperspectral (LrHS) images to generate a high-resolution hyperspectral (HrHS) image, which has become one of the most commonly addressed problems for hyperspectral image processing. In this paper, we specifically designed a network architecture for the MS/HS fusion task, called MHF-net, which not only contains clear interpretability, but also reasonably embeds the well studied linear mapping that links the HrHS image to HrMS and LrHS images. In particular, we first construct an MS/HS fusion model which merges the generalization models of low-resolution images and the low-rankness prior knowledge of HrHS image into a concise formulation, and then we build the proposed network by unfolding the proximal gradient algorithm for solving the proposed model. As a result of the careful design for the model and algorithm, all the fundamental modules in MHF-net have clear physical meanings and are thus easily interpretable. This not only greatly facilitates an easy intuitive observation and analysis on what happens inside the network, but also leads to its good generalization capability. Based on the architecture of MHF-net, we further design two deep learning regimes for two general cases in practice: consistent MHF-net and blind MHF-net. The former is suitable in the case that spectral and spatial responses of training and testing data are consistent, just as considered in most of the pervious general supervised MS/HS fusion researches. The latter ensures a good generalization in mismatch cases of spectral and spatial responses in training and testing data, and even across different sensors, which is generally considered to be a challenging issue for general supervised MS/HS fusion methods. Experimental results on simulated and real data substantiate the superiority of our method both visually and quantitatively as compared with state-of-the-art methods along this line of research." @default.
- W3048794210 created "2020-08-18" @default.
- W3048794210 creator A5012371714 @default.
- W3048794210 creator A5022673825 @default.
- W3048794210 creator A5075938156 @default.
- W3048794210 creator A5078092645 @default.
- W3048794210 creator A5091017287 @default.
- W3048794210 date "2022-03-01" @default.
- W3048794210 modified "2023-10-17" @default.
- W3048794210 title "MHF-Net: An Interpretable Deep Network for Multispectral and Hyperspectral Image Fusion" @default.
- W3048794210 cites W1495168473 @default.
- W3048794210 cites W1885185971 @default.
- W3048794210 cites W1965309615 @default.
- W3048794210 cites W1973234061 @default.
- W3048794210 cites W1988952689 @default.
- W3048794210 cites W2001298023 @default.
- W3048794210 cites W2001800591 @default.
- W3048794210 cites W2009820353 @default.
- W3048794210 cites W2011643180 @default.
- W3048794210 cites W2053081714 @default.
- W3048794210 cites W2054440797 @default.
- W3048794210 cites W2059330250 @default.
- W3048794210 cites W2067782748 @default.
- W3048794210 cites W2072445211 @default.
- W3048794210 cites W2075621901 @default.
- W3048794210 cites W2082190101 @default.
- W3048794210 cites W2092116045 @default.
- W3048794210 cites W2097117768 @default.
- W3048794210 cites W2100109944 @default.
- W3048794210 cites W2100556411 @default.
- W3048794210 cites W2111896212 @default.
- W3048794210 cites W2117146861 @default.
- W3048794210 cites W2120273653 @default.
- W3048794210 cites W2126025632 @default.
- W3048794210 cites W2133665775 @default.
- W3048794210 cites W2141983208 @default.
- W3048794210 cites W2146842127 @default.
- W3048794210 cites W2160662337 @default.
- W3048794210 cites W2162842940 @default.
- W3048794210 cites W2163886442 @default.
- W3048794210 cites W2171108951 @default.
- W3048794210 cites W2194775991 @default.
- W3048794210 cites W2221899823 @default.
- W3048794210 cites W2327364376 @default.
- W3048794210 cites W2462592242 @default.
- W3048794210 cites W2552111036 @default.
- W3048794210 cites W2588805337 @default.
- W3048794210 cites W2592312604 @default.
- W3048794210 cites W2618422320 @default.
- W3048794210 cites W2619662254 @default.
- W3048794210 cites W2625894731 @default.
- W3048794210 cites W2717881181 @default.
- W3048794210 cites W2743606449 @default.
- W3048794210 cites W2784344583 @default.
- W3048794210 cites W2792365373 @default.
- W3048794210 cites W2798559986 @default.
- W3048794210 cites W2804744787 @default.
- W3048794210 cites W2948669395 @default.
- W3048794210 cites W2963007295 @default.
- W3048794210 cites W2963284277 @default.
- W3048794210 cites W2963442801 @default.
- W3048794210 cites W2964140612 @default.
- W3048794210 cites W2964984565 @default.
- W3048794210 cites W3004925702 @default.
- W3048794210 cites W3098542449 @default.
- W3048794210 cites W3099843321 @default.
- W3048794210 cites W4231697575 @default.
- W3048794210 doi "https://doi.org/10.1109/tpami.2020.3015691" @default.
- W3048794210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32780695" @default.
- W3048794210 hasPublicationYear "2022" @default.
- W3048794210 type Work @default.
- W3048794210 sameAs 3048794210 @default.
- W3048794210 citedByCount "67" @default.
- W3048794210 countsByYear W30487942102020 @default.
- W3048794210 countsByYear W30487942102021 @default.
- W3048794210 countsByYear W30487942102022 @default.
- W3048794210 countsByYear W30487942102023 @default.
- W3048794210 crossrefType "journal-article" @default.
- W3048794210 hasAuthorship W3048794210A5012371714 @default.
- W3048794210 hasAuthorship W3048794210A5022673825 @default.
- W3048794210 hasAuthorship W3048794210A5075938156 @default.
- W3048794210 hasAuthorship W3048794210A5078092645 @default.
- W3048794210 hasAuthorship W3048794210A5091017287 @default.
- W3048794210 hasConcept C108583219 @default.
- W3048794210 hasConcept C115961682 @default.
- W3048794210 hasConcept C119857082 @default.
- W3048794210 hasConcept C127313418 @default.
- W3048794210 hasConcept C134306372 @default.
- W3048794210 hasConcept C14166107 @default.
- W3048794210 hasConcept C153180895 @default.
- W3048794210 hasConcept C154945302 @default.
- W3048794210 hasConcept C159078339 @default.
- W3048794210 hasConcept C173163844 @default.
- W3048794210 hasConcept C177148314 @default.
- W3048794210 hasConcept C205372480 @default.
- W3048794210 hasConcept C2524010 @default.
- W3048794210 hasConcept C2781067378 @default.
- W3048794210 hasConcept C31972630 @default.