Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048795876> ?p ?o ?g. }
- W3048795876 endingPage "112026" @default.
- W3048795876 startingPage "112026" @default.
- W3048795876 abstract "Abstract Numerous algorithms are used in remote sensing to detect changes in vegetation. Majority of them require several tunable parameters or can only detect abrupt forest disturbances. The aim of this study was to develop a new threshold- and trend-based vegetation change monitoring algorithm (TVCMA) that can detect abrupt and gradual changes in vegetation within forested and non-forested areas. To test the algorithm, the Polish and Slovak Tatra Mountains were used as the study area. Strong winds and bark beetle outbreaks (BBOs) are the primary causes of vegetation disturbances in this region. An annual time series of vegetation indices from 1984 to 2016 was used as the input. The long time span necessitated the use of scenes from the Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI). Fifty-one images were atmospherically and topographically corrected. The collected in situ data included the chlorophyll content, leaf area index, absorbed photosynthetically active radiation, and spectral signatures of non-forest vegetation, dwarf pine, and forest stands in 190 sample plots. To select the vegetation indices (VIs) most suitable for disturbance detection, ten satellite-based VIs were correlated with the acquired field data. The normalized difference moisture index (NDMI) was found to be more sensitive to vegetation disturbances and more resistant to data noise than any other tested index. The TVCMA uses two separate approaches, namely, thresholding, which indicates where and when the disturbances occurred, and a regression analysis, which presents the general trend in the time series for each pixel. The number of detected disturbances, the Spearman's correlation coefficient between the modeled trend line and satellite observations, and p-values were calculated. Different threshold values were tested to identify the value that yielded the most accurate results. By using 200 randomly selected validation points, we achieved an 83.3% producer's accuracy for disturbances (PAD), 46.3% user's accuracy for disturbances (UAD), and 97.8% overall accuracy (OA). These results confirm the potential of TVCMA for monitoring abrupt and gradual changes in vegetation. Moreover, the simplicity and data-driven character of the proposed algorithm make it suitable for multi-temporal analyses of other types of satellite data." @default.
- W3048795876 created "2020-08-18" @default.
- W3048795876 creator A5011835601 @default.
- W3048795876 creator A5061671139 @default.
- W3048795876 creator A5081973292 @default.
- W3048795876 date "2020-11-01" @default.
- W3048795876 modified "2023-09-24" @default.
- W3048795876 title "Threshold- and trend-based vegetation change monitoring algorithm based on the inter-annual multi-temporal normalized difference moisture index series: A case study of the Tatra Mountains" @default.
- W3048795876 cites W100848160 @default.
- W3048795876 cites W1543507298 @default.
- W3048795876 cites W1974329551 @default.
- W3048795876 cites W1979210946 @default.
- W3048795876 cites W1981213426 @default.
- W3048795876 cites W1987064663 @default.
- W3048795876 cites W1993413120 @default.
- W3048795876 cites W1998842586 @default.
- W3048795876 cites W2011475440 @default.
- W3048795876 cites W2012686349 @default.
- W3048795876 cites W2022204818 @default.
- W3048795876 cites W2030864384 @default.
- W3048795876 cites W2036798369 @default.
- W3048795876 cites W2041149928 @default.
- W3048795876 cites W2048078494 @default.
- W3048795876 cites W2049398443 @default.
- W3048795876 cites W2055718260 @default.
- W3048795876 cites W2056036936 @default.
- W3048795876 cites W2065191898 @default.
- W3048795876 cites W2067985435 @default.
- W3048795876 cites W2073119306 @default.
- W3048795876 cites W2077707413 @default.
- W3048795876 cites W2085316211 @default.
- W3048795876 cites W2086154193 @default.
- W3048795876 cites W2088557643 @default.
- W3048795876 cites W2111443246 @default.
- W3048795876 cites W2113410727 @default.
- W3048795876 cites W2118364838 @default.
- W3048795876 cites W2137341666 @default.
- W3048795876 cites W2138973222 @default.
- W3048795876 cites W2140908571 @default.
- W3048795876 cites W2146302196 @default.
- W3048795876 cites W2151456308 @default.
- W3048795876 cites W2157675604 @default.
- W3048795876 cites W2161336494 @default.
- W3048795876 cites W2167869331 @default.
- W3048795876 cites W2300415889 @default.
- W3048795876 cites W2571248928 @default.
- W3048795876 cites W2590351988 @default.
- W3048795876 cites W2598828605 @default.
- W3048795876 cites W2606116651 @default.
- W3048795876 cites W2613179521 @default.
- W3048795876 cites W2735042947 @default.
- W3048795876 cites W2735087910 @default.
- W3048795876 cites W2735602585 @default.
- W3048795876 cites W2769358239 @default.
- W3048795876 cites W2774789623 @default.
- W3048795876 cites W2795769425 @default.
- W3048795876 cites W2796189661 @default.
- W3048795876 cites W2908408625 @default.
- W3048795876 cites W2911964244 @default.
- W3048795876 cites W2950314938 @default.
- W3048795876 doi "https://doi.org/10.1016/j.rse.2020.112026" @default.
- W3048795876 hasPublicationYear "2020" @default.
- W3048795876 type Work @default.
- W3048795876 sameAs 3048795876 @default.
- W3048795876 citedByCount "19" @default.
- W3048795876 countsByYear W30487958762021 @default.
- W3048795876 countsByYear W30487958762022 @default.
- W3048795876 countsByYear W30487958762023 @default.
- W3048795876 crossrefType "journal-article" @default.
- W3048795876 hasAuthorship W3048795876A5011835601 @default.
- W3048795876 hasAuthorship W3048795876A5061671139 @default.
- W3048795876 hasAuthorship W3048795876A5081973292 @default.
- W3048795876 hasConcept C105795698 @default.
- W3048795876 hasConcept C111368507 @default.
- W3048795876 hasConcept C11413529 @default.
- W3048795876 hasConcept C127313418 @default.
- W3048795876 hasConcept C132651083 @default.
- W3048795876 hasConcept C136764020 @default.
- W3048795876 hasConcept C142724271 @default.
- W3048795876 hasConcept C143724316 @default.
- W3048795876 hasConcept C151406439 @default.
- W3048795876 hasConcept C151730666 @default.
- W3048795876 hasConcept C153294291 @default.
- W3048795876 hasConcept C1549246 @default.
- W3048795876 hasConcept C176864760 @default.
- W3048795876 hasConcept C203595873 @default.
- W3048795876 hasConcept C205649164 @default.
- W3048795876 hasConcept C2776133958 @default.
- W3048795876 hasConcept C2777382242 @default.
- W3048795876 hasConcept C2780376076 @default.
- W3048795876 hasConcept C33923547 @default.
- W3048795876 hasConcept C39432304 @default.
- W3048795876 hasConcept C41008148 @default.
- W3048795876 hasConcept C49204034 @default.
- W3048795876 hasConcept C62649853 @default.
- W3048795876 hasConcept C71924100 @default.
- W3048795876 hasConceptScore W3048795876C105795698 @default.
- W3048795876 hasConceptScore W3048795876C111368507 @default.