Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048796016> ?p ?o ?g. }
- W3048796016 abstract "We apply machine learning to the problem of finding numerical Calabi-Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on Kahler manifolds, we combine conventional curve fitting and machine-learning techniques to numerically approximate Ricci-flat metrics. We show that machine learning is able to predict the Calabi-Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this in conjunction with a straightforward curve fitting routine, we demonstrate that it is possible to find highly accurate numerical metrics much more quickly than by using Donaldson's algorithm alone, with our new machine-learning algorithm decreasing the time required by between one and two orders of magnitude." @default.
- W3048796016 created "2020-08-18" @default.
- W3048796016 creator A5017630672 @default.
- W3048796016 creator A5038555769 @default.
- W3048796016 creator A5059766550 @default.
- W3048796016 date "2020-08-12" @default.
- W3048796016 modified "2023-10-13" @default.
- W3048796016 title "Machine Learning Calabi–Yau Metrics" @default.
- W3048796016 cites W1595246290 @default.
- W3048796016 cites W1865485474 @default.
- W3048796016 cites W1970736177 @default.
- W3048796016 cites W1973565526 @default.
- W3048796016 cites W1985172744 @default.
- W3048796016 cites W1987656367 @default.
- W3048796016 cites W1987760861 @default.
- W3048796016 cites W2003418026 @default.
- W3048796016 cites W2014427032 @default.
- W3048796016 cites W2015182354 @default.
- W3048796016 cites W2019375311 @default.
- W3048796016 cites W2025310445 @default.
- W3048796016 cites W2033495266 @default.
- W3048796016 cites W2035174848 @default.
- W3048796016 cites W2041918193 @default.
- W3048796016 cites W2043241826 @default.
- W3048796016 cites W2049473320 @default.
- W3048796016 cites W2051866742 @default.
- W3048796016 cites W2059190197 @default.
- W3048796016 cites W2059913730 @default.
- W3048796016 cites W2064392422 @default.
- W3048796016 cites W2074716309 @default.
- W3048796016 cites W2074934256 @default.
- W3048796016 cites W2078143381 @default.
- W3048796016 cites W2081173235 @default.
- W3048796016 cites W2082434099 @default.
- W3048796016 cites W2097042672 @default.
- W3048796016 cites W2101660852 @default.
- W3048796016 cites W2115171731 @default.
- W3048796016 cites W2159898363 @default.
- W3048796016 cites W2734965263 @default.
- W3048796016 cites W2766409877 @default.
- W3048796016 cites W2770805627 @default.
- W3048796016 cites W2806878911 @default.
- W3048796016 cites W2891834385 @default.
- W3048796016 cites W2893538824 @default.
- W3048796016 cites W2901947642 @default.
- W3048796016 cites W2904411115 @default.
- W3048796016 cites W2918900640 @default.
- W3048796016 cites W2960999379 @default.
- W3048796016 cites W2963498137 @default.
- W3048796016 cites W2963649982 @default.
- W3048796016 cites W2963733211 @default.
- W3048796016 cites W3099307255 @default.
- W3048796016 cites W3100056294 @default.
- W3048796016 cites W3101419899 @default.
- W3048796016 cites W3101475143 @default.
- W3048796016 cites W3101664614 @default.
- W3048796016 cites W3103282954 @default.
- W3048796016 cites W3103740100 @default.
- W3048796016 cites W3105180718 @default.
- W3048796016 cites W3105467760 @default.
- W3048796016 cites W3105570377 @default.
- W3048796016 cites W3105799564 @default.
- W3048796016 cites W3122351626 @default.
- W3048796016 doi "https://doi.org/10.1002/prop.202000068" @default.
- W3048796016 hasPublicationYear "2020" @default.
- W3048796016 type Work @default.
- W3048796016 sameAs 3048796016 @default.
- W3048796016 citedByCount "34" @default.
- W3048796016 countsByYear W30487960162020 @default.
- W3048796016 countsByYear W30487960162021 @default.
- W3048796016 countsByYear W30487960162022 @default.
- W3048796016 countsByYear W30487960162023 @default.
- W3048796016 crossrefType "journal-article" @default.
- W3048796016 hasAuthorship W3048796016A5017630672 @default.
- W3048796016 hasAuthorship W3048796016A5038555769 @default.
- W3048796016 hasAuthorship W3048796016A5059766550 @default.
- W3048796016 hasBestOaLocation W30487960161 @default.
- W3048796016 hasConcept C11413529 @default.
- W3048796016 hasConcept C119857082 @default.
- W3048796016 hasConcept C121332964 @default.
- W3048796016 hasConcept C126691448 @default.
- W3048796016 hasConcept C127413603 @default.
- W3048796016 hasConcept C1276947 @default.
- W3048796016 hasConcept C154945302 @default.
- W3048796016 hasConcept C158260368 @default.
- W3048796016 hasConcept C176217482 @default.
- W3048796016 hasConcept C198531522 @default.
- W3048796016 hasConcept C21547014 @default.
- W3048796016 hasConcept C2524010 @default.
- W3048796016 hasConcept C28826006 @default.
- W3048796016 hasConcept C33923547 @default.
- W3048796016 hasConcept C41008148 @default.
- W3048796016 hasConcept C97355855 @default.
- W3048796016 hasConceptScore W3048796016C11413529 @default.
- W3048796016 hasConceptScore W3048796016C119857082 @default.
- W3048796016 hasConceptScore W3048796016C121332964 @default.
- W3048796016 hasConceptScore W3048796016C126691448 @default.
- W3048796016 hasConceptScore W3048796016C127413603 @default.
- W3048796016 hasConceptScore W3048796016C1276947 @default.
- W3048796016 hasConceptScore W3048796016C154945302 @default.