Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048796145> ?p ?o ?g. }
- W3048796145 endingPage "108339" @default.
- W3048796145 startingPage "108339" @default.
- W3048796145 abstract "It is generally difficult to obtain a large number of labeled samples (i.e., samples with known fault types) of rolling bearings installed on large-scale mechanical equipment under current working conditions, which leads to the low accuracy of fault diagnosis for current testing samples using traditional machine learning algorithms. On account of this, a novel transfer learning method termed as deep convolution domain-adversarial transfer learning (DCDATL) is proposed for rolling bearing fault diagnosis in this paper. In the proposed DCDATL, a new deep convolution residual feature extractor is constructed to extract high-level features, which can avoid gradient problems such as gradient disappearance and gradient divergence during training DCDATL, thus improving the convergence and non-linear approximation ability of DCDATL. At the same time, the joint distribution of labeled samples in auxiliary domain and unlabeled samples in target domain is creatively used for domain-adversarial training, which can enhance the adaptability of samples in auxiliary domain to target domain and improve the transfer performance of DCDATL. Moreover, the strategy based on minimizing the joint distribution domain-adversarial total loss function of DCDATL is innovatively presented to improve the fault classification accuracy after high-level feature transfer. The above advantages of DCDATL make it feasible to perform high-precision fault diagnosis on current testing samples by using the historical labeled samples in auxiliary domain when there are no labeled samples in target domain. The fault diagnosis examples of rolling bearings demonstrate the effectiveness of the proposed method." @default.
- W3048796145 created "2020-08-18" @default.
- W3048796145 creator A5010206131 @default.
- W3048796145 creator A5054306467 @default.
- W3048796145 creator A5071765241 @default.
- W3048796145 creator A5081844561 @default.
- W3048796145 date "2021-02-01" @default.
- W3048796145 modified "2023-10-17" @default.
- W3048796145 title "Deep convolution domain-adversarial transfer learning for fault diagnosis of rolling bearings" @default.
- W3048796145 cites W2092777731 @default.
- W3048796145 cites W2104094955 @default.
- W3048796145 cites W2317595875 @default.
- W3048796145 cites W2463319845 @default.
- W3048796145 cites W2485614840 @default.
- W3048796145 cites W2548645390 @default.
- W3048796145 cites W2556013418 @default.
- W3048796145 cites W2587865582 @default.
- W3048796145 cites W2620876433 @default.
- W3048796145 cites W2707074415 @default.
- W3048796145 cites W2738563279 @default.
- W3048796145 cites W2766582232 @default.
- W3048796145 cites W2789500342 @default.
- W3048796145 cites W2791694051 @default.
- W3048796145 cites W2795550564 @default.
- W3048796145 cites W2799972844 @default.
- W3048796145 cites W2800128458 @default.
- W3048796145 cites W2809350318 @default.
- W3048796145 cites W2811138152 @default.
- W3048796145 cites W2884552531 @default.
- W3048796145 cites W2884665291 @default.
- W3048796145 cites W2886794804 @default.
- W3048796145 cites W2889580470 @default.
- W3048796145 cites W2895926968 @default.
- W3048796145 cites W2898597600 @default.
- W3048796145 cites W2901506610 @default.
- W3048796145 cites W2906578288 @default.
- W3048796145 cites W2915684573 @default.
- W3048796145 cites W2940935128 @default.
- W3048796145 cites W2946805823 @default.
- W3048796145 cites W2946867277 @default.
- W3048796145 cites W2949726109 @default.
- W3048796145 cites W2953260284 @default.
- W3048796145 doi "https://doi.org/10.1016/j.measurement.2020.108339" @default.
- W3048796145 hasPublicationYear "2021" @default.
- W3048796145 type Work @default.
- W3048796145 sameAs 3048796145 @default.
- W3048796145 citedByCount "64" @default.
- W3048796145 countsByYear W30487961452020 @default.
- W3048796145 countsByYear W30487961452021 @default.
- W3048796145 countsByYear W30487961452022 @default.
- W3048796145 countsByYear W30487961452023 @default.
- W3048796145 crossrefType "journal-article" @default.
- W3048796145 hasAuthorship W3048796145A5010206131 @default.
- W3048796145 hasAuthorship W3048796145A5054306467 @default.
- W3048796145 hasAuthorship W3048796145A5071765241 @default.
- W3048796145 hasAuthorship W3048796145A5081844561 @default.
- W3048796145 hasConcept C108583219 @default.
- W3048796145 hasConcept C11413529 @default.
- W3048796145 hasConcept C119599485 @default.
- W3048796145 hasConcept C127313418 @default.
- W3048796145 hasConcept C127413603 @default.
- W3048796145 hasConcept C134306372 @default.
- W3048796145 hasConcept C138885662 @default.
- W3048796145 hasConcept C150899416 @default.
- W3048796145 hasConcept C153180895 @default.
- W3048796145 hasConcept C154945302 @default.
- W3048796145 hasConcept C155512373 @default.
- W3048796145 hasConcept C165205528 @default.
- W3048796145 hasConcept C175551986 @default.
- W3048796145 hasConcept C2776401178 @default.
- W3048796145 hasConcept C33923547 @default.
- W3048796145 hasConcept C36503486 @default.
- W3048796145 hasConcept C41008148 @default.
- W3048796145 hasConcept C41895202 @default.
- W3048796145 hasConcept C45347329 @default.
- W3048796145 hasConcept C50644808 @default.
- W3048796145 hasConcept C81299745 @default.
- W3048796145 hasConceptScore W3048796145C108583219 @default.
- W3048796145 hasConceptScore W3048796145C11413529 @default.
- W3048796145 hasConceptScore W3048796145C119599485 @default.
- W3048796145 hasConceptScore W3048796145C127313418 @default.
- W3048796145 hasConceptScore W3048796145C127413603 @default.
- W3048796145 hasConceptScore W3048796145C134306372 @default.
- W3048796145 hasConceptScore W3048796145C138885662 @default.
- W3048796145 hasConceptScore W3048796145C150899416 @default.
- W3048796145 hasConceptScore W3048796145C153180895 @default.
- W3048796145 hasConceptScore W3048796145C154945302 @default.
- W3048796145 hasConceptScore W3048796145C155512373 @default.
- W3048796145 hasConceptScore W3048796145C165205528 @default.
- W3048796145 hasConceptScore W3048796145C175551986 @default.
- W3048796145 hasConceptScore W3048796145C2776401178 @default.
- W3048796145 hasConceptScore W3048796145C33923547 @default.
- W3048796145 hasConceptScore W3048796145C36503486 @default.
- W3048796145 hasConceptScore W3048796145C41008148 @default.
- W3048796145 hasConceptScore W3048796145C41895202 @default.
- W3048796145 hasConceptScore W3048796145C45347329 @default.
- W3048796145 hasConceptScore W3048796145C50644808 @default.
- W3048796145 hasConceptScore W3048796145C81299745 @default.