Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048797435> ?p ?o ?g. }
- W3048797435 abstract "Quantum curves arise from Seiberg-Witten curves associated to 4d $mathcal{N}=2$ gauge theories by promoting coordinates to non-commutative operators. In this way the algebraic equation of the curve is interpreted as an operator equation where a Hamiltonian acts on a wave-function with zero eigenvalue. We find that this structure generalises when one considers torus-compactified 6d $mathcal{N}=(1,0)$ SCFTs. The corresponding quantum curves are elliptic in nature and hence the associated eigenvectors/eigenvalues can be expressed in terms of Jacobi forms. In this paper we focus on the class of 6d SCFTs arising from M5 branes transverse to a $mathbb{C}^2/mathbb{Z}_k$ singularity. In the limit where the compactified 2-torus has zero size, the corresponding 4d $mathcal{N}=2$ theories are known as class $mathcal{S}_k$. We explicitly show that the eigenvectors associated to the quantum curve are expectation values of codimension 2 surface operators, while the corresponding eigenvalues are codimension 4 Wilson surface expectation values." @default.
- W3048797435 created "2020-08-18" @default.
- W3048797435 creator A5021857266 @default.
- W3048797435 creator A5024927408 @default.
- W3048797435 creator A5085123678 @default.
- W3048797435 creator A5090689321 @default.
- W3048797435 date "2021-03-01" @default.
- W3048797435 modified "2023-10-11" @default.
- W3048797435 title "Elliptic quantum curves of class $$ {mathcal{S}}_k $$" @default.
- W3048797435 cites W136831273 @default.
- W3048797435 cites W1599689756 @default.
- W3048797435 cites W1730236954 @default.
- W3048797435 cites W1848861961 @default.
- W3048797435 cites W1868265607 @default.
- W3048797435 cites W1887362312 @default.
- W3048797435 cites W1964141736 @default.
- W3048797435 cites W1965850750 @default.
- W3048797435 cites W1990274428 @default.
- W3048797435 cites W1994993132 @default.
- W3048797435 cites W2039520243 @default.
- W3048797435 cites W2051001031 @default.
- W3048797435 cites W2060111284 @default.
- W3048797435 cites W2081156242 @default.
- W3048797435 cites W2086798603 @default.
- W3048797435 cites W2120340707 @default.
- W3048797435 cites W2133561834 @default.
- W3048797435 cites W2162715369 @default.
- W3048797435 cites W2494277051 @default.
- W3048797435 cites W2520464700 @default.
- W3048797435 cites W2581010495 @default.
- W3048797435 cites W2598139253 @default.
- W3048797435 cites W2606451287 @default.
- W3048797435 cites W2782700034 @default.
- W3048797435 cites W2787010883 @default.
- W3048797435 cites W2798269874 @default.
- W3048797435 cites W2890990473 @default.
- W3048797435 cites W2968043634 @default.
- W3048797435 cites W2976392970 @default.
- W3048797435 cites W2987019510 @default.
- W3048797435 cites W3037698454 @default.
- W3048797435 cites W3098233756 @default.
- W3048797435 cites W3098700207 @default.
- W3048797435 cites W3099225063 @default.
- W3048797435 cites W3099498863 @default.
- W3048797435 cites W3099527232 @default.
- W3048797435 cites W3099682633 @default.
- W3048797435 cites W3099766845 @default.
- W3048797435 cites W3100419405 @default.
- W3048797435 cites W3100708825 @default.
- W3048797435 cites W3100738397 @default.
- W3048797435 cites W3101514373 @default.
- W3048797435 cites W3101661578 @default.
- W3048797435 cites W3101709520 @default.
- W3048797435 cites W3102286676 @default.
- W3048797435 cites W3102323455 @default.
- W3048797435 cites W3102871757 @default.
- W3048797435 cites W3103520229 @default.
- W3048797435 cites W3104474545 @default.
- W3048797435 cites W3104475251 @default.
- W3048797435 cites W3104819331 @default.
- W3048797435 cites W3105153511 @default.
- W3048797435 cites W3105857075 @default.
- W3048797435 cites W3105858901 @default.
- W3048797435 cites W3110741013 @default.
- W3048797435 cites W3122691113 @default.
- W3048797435 cites W3123174255 @default.
- W3048797435 cites W3123248326 @default.
- W3048797435 cites W3125690539 @default.
- W3048797435 cites W3125985315 @default.
- W3048797435 cites W4214525813 @default.
- W3048797435 doi "https://doi.org/10.1007/jhep03(2021)028" @default.
- W3048797435 hasPublicationYear "2021" @default.
- W3048797435 type Work @default.
- W3048797435 sameAs 3048797435 @default.
- W3048797435 citedByCount "6" @default.
- W3048797435 countsByYear W30487974352021 @default.
- W3048797435 countsByYear W30487974352022 @default.
- W3048797435 crossrefType "journal-article" @default.
- W3048797435 hasAuthorship W3048797435A5021857266 @default.
- W3048797435 hasAuthorship W3048797435A5024927408 @default.
- W3048797435 hasAuthorship W3048797435A5085123678 @default.
- W3048797435 hasAuthorship W3048797435A5090689321 @default.
- W3048797435 hasBestOaLocation W30487974351 @default.
- W3048797435 hasConcept C121332964 @default.
- W3048797435 hasConcept C126255220 @default.
- W3048797435 hasConcept C130787639 @default.
- W3048797435 hasConcept C134306372 @default.
- W3048797435 hasConcept C158693339 @default.
- W3048797435 hasConcept C16171025 @default.
- W3048797435 hasConcept C179603306 @default.
- W3048797435 hasConcept C202444582 @default.
- W3048797435 hasConcept C2524010 @default.
- W3048797435 hasConcept C33923547 @default.
- W3048797435 hasConcept C37914503 @default.
- W3048797435 hasConcept C62520636 @default.
- W3048797435 hasConcept C83979697 @default.
- W3048797435 hasConcept C84114770 @default.
- W3048797435 hasConcept C9767117 @default.
- W3048797435 hasConceptScore W3048797435C121332964 @default.
- W3048797435 hasConceptScore W3048797435C126255220 @default.