Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048797819> ?p ?o ?g. }
- W3048797819 endingPage "2586" @default.
- W3048797819 startingPage "2586" @default.
- W3048797819 abstract "The visual data acquisition from small unmanned aerial vehicles (UAVs) may encounter a situation in which blur appears on the images. Image blurring caused by camera motion during exposure significantly impacts the images interpretation quality and consequently the quality of photogrammetric products. On blurred images, it is difficult to visually locate ground control points, and the number of identified feature points decreases rapidly together with an increasing blur kernel. The nature of blur can be non-uniform, which makes it hard to forecast for traditional deblurring methods. Due to the above, the author of this publication concluded that the neural methods developed in recent years were able to eliminate blur on UAV images with an unpredictable or highly variable blur nature. In this research, a new, rapid method based on generative adversarial networks (GANs) was applied for deblurring. A data set for neural network training was developed based on real aerial images collected over the last few years. More than 20 full sets of photogrammetric products were developed, including point clouds, orthoimages and digital surface models. The sets were generated from both blurred and deblurred images using the presented method. The results presented in the publication show that the method for improving blurred photo quality significantly contributed to an improvement in the general quality of typical photogrammetric products. The geometric accuracy of the products generated from deblurred photos was maintained despite the rising blur kernel. The quality of textures and input photos was increased. This research proves that the developed method based on neural networks can be used for deblur, even in highly blurred images, and it significantly increases the final geometric quality of the photogrammetric products. In practical cases, it will be possible to implement an additional feature in the photogrammetric software, which will eliminate unwanted blur and allow one to use almost all blurred images in the modelling process." @default.
- W3048797819 created "2020-08-18" @default.
- W3048797819 creator A5063582274 @default.
- W3048797819 date "2020-08-11" @default.
- W3048797819 modified "2023-10-18" @default.
- W3048797819 title "A Novel Method for the Deblurring of Photogrammetric Images Using Conditional Generative Adversarial Networks" @default.
- W3048797819 cites W1242813217 @default.
- W3048797819 cites W1457323852 @default.
- W3048797819 cites W1598281290 @default.
- W3048797819 cites W1598936309 @default.
- W3048797819 cites W1795014501 @default.
- W3048797819 cites W1916935112 @default.
- W3048797819 cites W1982471090 @default.
- W3048797819 cites W1991486131 @default.
- W3048797819 cites W1995931332 @default.
- W3048797819 cites W2006174242 @default.
- W3048797819 cites W2018640163 @default.
- W3048797819 cites W2020789691 @default.
- W3048797819 cites W2035592529 @default.
- W3048797819 cites W2043529138 @default.
- W3048797819 cites W2075683923 @default.
- W3048797819 cites W2088691392 @default.
- W3048797819 cites W2102166818 @default.
- W3048797819 cites W2103992353 @default.
- W3048797819 cites W2127539292 @default.
- W3048797819 cites W2129618166 @default.
- W3048797819 cites W2153852270 @default.
- W3048797819 cites W2156164696 @default.
- W3048797819 cites W2158410598 @default.
- W3048797819 cites W2158412433 @default.
- W3048797819 cites W2193981117 @default.
- W3048797819 cites W2300657047 @default.
- W3048797819 cites W2313698723 @default.
- W3048797819 cites W2363840598 @default.
- W3048797819 cites W2410953861 @default.
- W3048797819 cites W2415624988 @default.
- W3048797819 cites W2474752103 @default.
- W3048797819 cites W2510541301 @default.
- W3048797819 cites W2558832094 @default.
- W3048797819 cites W2561675511 @default.
- W3048797819 cites W2575499577 @default.
- W3048797819 cites W2598533724 @default.
- W3048797819 cites W2615043580 @default.
- W3048797819 cites W2752249389 @default.
- W3048797819 cites W2794944192 @default.
- W3048797819 cites W2888150988 @default.
- W3048797819 cites W2893371989 @default.
- W3048797819 cites W2899322874 @default.
- W3048797819 cites W2911644340 @default.
- W3048797819 cites W2945002475 @default.
- W3048797819 cites W2946318177 @default.
- W3048797819 cites W2980272608 @default.
- W3048797819 cites W2989685114 @default.
- W3048797819 cites W2995754325 @default.
- W3048797819 cites W3000775737 @default.
- W3048797819 cites W3010019682 @default.
- W3048797819 cites W3012957231 @default.
- W3048797819 cites W3026204242 @default.
- W3048797819 cites W3035589008 @default.
- W3048797819 cites W3099235055 @default.
- W3048797819 cites W3104341624 @default.
- W3048797819 cites W4238238843 @default.
- W3048797819 cites W4250438955 @default.
- W3048797819 doi "https://doi.org/10.3390/rs12162586" @default.
- W3048797819 hasPublicationYear "2020" @default.
- W3048797819 type Work @default.
- W3048797819 sameAs 3048797819 @default.
- W3048797819 citedByCount "11" @default.
- W3048797819 countsByYear W30487978192020 @default.
- W3048797819 countsByYear W30487978192021 @default.
- W3048797819 countsByYear W30487978192022 @default.
- W3048797819 crossrefType "journal-article" @default.
- W3048797819 hasAuthorship W3048797819A5063582274 @default.
- W3048797819 hasBestOaLocation W30487978191 @default.
- W3048797819 hasConcept C106430172 @default.
- W3048797819 hasConcept C114614502 @default.
- W3048797819 hasConcept C115961682 @default.
- W3048797819 hasConcept C117455697 @default.
- W3048797819 hasConcept C154945302 @default.
- W3048797819 hasConcept C2777693668 @default.
- W3048797819 hasConcept C2777708103 @default.
- W3048797819 hasConcept C31972630 @default.
- W3048797819 hasConcept C33923547 @default.
- W3048797819 hasConcept C41008148 @default.
- W3048797819 hasConcept C50644808 @default.
- W3048797819 hasConcept C74193536 @default.
- W3048797819 hasConcept C81363708 @default.
- W3048797819 hasConcept C9417928 @default.
- W3048797819 hasConceptScore W3048797819C106430172 @default.
- W3048797819 hasConceptScore W3048797819C114614502 @default.
- W3048797819 hasConceptScore W3048797819C115961682 @default.
- W3048797819 hasConceptScore W3048797819C117455697 @default.
- W3048797819 hasConceptScore W3048797819C154945302 @default.
- W3048797819 hasConceptScore W3048797819C2777693668 @default.
- W3048797819 hasConceptScore W3048797819C2777708103 @default.
- W3048797819 hasConceptScore W3048797819C31972630 @default.
- W3048797819 hasConceptScore W3048797819C33923547 @default.
- W3048797819 hasConceptScore W3048797819C41008148 @default.