Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048799251> ?p ?o ?g. }
- W3048799251 endingPage "1714" @default.
- W3048799251 startingPage "1703" @default.
- W3048799251 abstract "The pH of a solution is one of its most fundamental chemical properties, impacting reaction pathways and kinetics across every area of chemistry. The atmosphere is no different, with the pH of the condensed phase driving key chemical reactions that ultimately impact global climate in numerous ways. The condensed phase in the atmosphere is comprised of suspended liquid or solid particles, known as the atmospheric aerosol, which are differentiated from cloud droplets by their much smaller size (primarily 99% of particles are <1 μm) and complexity. Within a single atmospheric particle, there can be hundreds to thousands of distinct chemical species, varying water content, high ionic strengths, and different phases (liquid, semisolid, and solid). Making aerosol analysis even more challenging, atmospheric particles are constantly evolving through heterogeneous reactions with gases and multiphase chemistry within the condensed phase. Based on these challenges, traditional pH measurements are not feasible, and, for years, indirect and proxy methods were the most common way to estimate aerosol pH, with mixed results. However, aerosol pH needs to be incorporated into climate models to accurately determine which chemical reactions are dominant in the atmosphere. Consequently, experimental measurements that probe pH in atmospherically relevant particles are sorely needed to advance our understanding of aerosol acidity.This Account describes recent advances in measurements of aerosol particle acidity, specifically three distinct methods we developed for experimentally determining particle pH. Our acid-conjugate base method uses Raman microspectroscopy to probe an acid (e.g., HSO4-) and its conjugate base (e.g., SO42-) in individual micrometer-sized particles. Our second approach is a field-deployable colorimetric method based on pH indicators (e.g., thymol blue) and cell phone imaging to provide a simple, low-cost approach to ensemble average (or bulk) pH for particles in distinct size ranges down to a few hundred nanometers in diameter. In our third method, we monitor acid-catalyzed polymer degradation of a thin film (∼23 nm) of poly(e-caprolactone) (PCL) on silicon by individual particles with atomic force microscopy (AFM) after inertially impacting particles of different pH. These measurements are improving our understanding of aerosol pH from a fundamental physical chemistry perspective and have led to initial atmospheric measurements. The impact of aerosol pH on key atmospheric processes, such as secondary organic aerosol (SOA) formation, is discussed. Some unique findings, such as an unexpected size dependence to aerosol pH and kinetic limitations, illustrate that particles are not always in thermodynamic equilibrium with the surrounding gas. The implications of our limited, but improving, understanding of the fundamental chemical concept of pH in the atmospheric aerosol are critical for connecting chemistry and climate." @default.
- W3048799251 created "2020-08-18" @default.
- W3048799251 creator A5000294065 @default.
- W3048799251 date "2020-08-10" @default.
- W3048799251 modified "2023-09-29" @default.
- W3048799251 title "Aerosol Acidity: Novel Measurements and Implications for Atmospheric Chemistry" @default.
- W3048799251 cites W1561878391 @default.
- W3048799251 cites W1958787480 @default.
- W3048799251 cites W1966779205 @default.
- W3048799251 cites W1980026409 @default.
- W3048799251 cites W1983809778 @default.
- W3048799251 cites W1985155924 @default.
- W3048799251 cites W2002570697 @default.
- W3048799251 cites W2009213223 @default.
- W3048799251 cites W2011174261 @default.
- W3048799251 cites W2021872914 @default.
- W3048799251 cites W2023441854 @default.
- W3048799251 cites W2024271742 @default.
- W3048799251 cites W2025266877 @default.
- W3048799251 cites W2027120532 @default.
- W3048799251 cites W2034261510 @default.
- W3048799251 cites W2044547423 @default.
- W3048799251 cites W2048640559 @default.
- W3048799251 cites W2066887109 @default.
- W3048799251 cites W2072692927 @default.
- W3048799251 cites W2075320109 @default.
- W3048799251 cites W2123728659 @default.
- W3048799251 cites W2125740784 @default.
- W3048799251 cites W2127510753 @default.
- W3048799251 cites W2128215438 @default.
- W3048799251 cites W2140282454 @default.
- W3048799251 cites W2142073124 @default.
- W3048799251 cites W2164264901 @default.
- W3048799251 cites W2167912038 @default.
- W3048799251 cites W2170312901 @default.
- W3048799251 cites W2196760595 @default.
- W3048799251 cites W2267060750 @default.
- W3048799251 cites W2278216748 @default.
- W3048799251 cites W2285209547 @default.
- W3048799251 cites W2302375954 @default.
- W3048799251 cites W2316830688 @default.
- W3048799251 cites W2320646933 @default.
- W3048799251 cites W2434497248 @default.
- W3048799251 cites W2440828217 @default.
- W3048799251 cites W2554285426 @default.
- W3048799251 cites W2559253440 @default.
- W3048799251 cites W2561531429 @default.
- W3048799251 cites W2583909753 @default.
- W3048799251 cites W2599900050 @default.
- W3048799251 cites W2606183968 @default.
- W3048799251 cites W2606664845 @default.
- W3048799251 cites W2736259611 @default.
- W3048799251 cites W2736986172 @default.
- W3048799251 cites W2748844949 @default.
- W3048799251 cites W2756356287 @default.
- W3048799251 cites W2769382577 @default.
- W3048799251 cites W2771315269 @default.
- W3048799251 cites W2786135501 @default.
- W3048799251 cites W2795087596 @default.
- W3048799251 cites W2883817951 @default.
- W3048799251 cites W2887185594 @default.
- W3048799251 cites W2891133900 @default.
- W3048799251 cites W2899324084 @default.
- W3048799251 cites W2923077877 @default.
- W3048799251 cites W2937687244 @default.
- W3048799251 cites W2949406262 @default.
- W3048799251 cites W2951587835 @default.
- W3048799251 cites W2952557421 @default.
- W3048799251 cites W2958455171 @default.
- W3048799251 cites W2962985376 @default.
- W3048799251 cites W2966836075 @default.
- W3048799251 cites W2968831009 @default.
- W3048799251 cites W2980782403 @default.
- W3048799251 cites W2984016555 @default.
- W3048799251 cites W2984415803 @default.
- W3048799251 cites W2990181299 @default.
- W3048799251 cites W3005451478 @default.
- W3048799251 cites W3006625104 @default.
- W3048799251 cites W3013572838 @default.
- W3048799251 cites W3033314936 @default.
- W3048799251 cites W4238785367 @default.
- W3048799251 cites W4244182899 @default.
- W3048799251 cites W81808495 @default.
- W3048799251 doi "https://doi.org/10.1021/acs.accounts.0c00303" @default.
- W3048799251 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32786333" @default.
- W3048799251 hasPublicationYear "2020" @default.
- W3048799251 type Work @default.
- W3048799251 sameAs 3048799251 @default.
- W3048799251 citedByCount "29" @default.
- W3048799251 countsByYear W30487992512020 @default.
- W3048799251 countsByYear W30487992512021 @default.
- W3048799251 countsByYear W30487992512022 @default.
- W3048799251 countsByYear W30487992512023 @default.
- W3048799251 crossrefType "journal-article" @default.
- W3048799251 hasAuthorship W3048799251A5000294065 @default.
- W3048799251 hasConcept C107872376 @default.
- W3048799251 hasConcept C127313418 @default.
- W3048799251 hasConcept C178790620 @default.