Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048802372> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3048802372 endingPage "8272" @default.
- W3048802372 startingPage "8259" @default.
- W3048802372 abstract "In the last decade, numerous researches have been focused on Image Super-Resolution (SR); this recreation or improvement model is vital in different research areas. Recently, deep learning algorithm finds useful to advance in the resolution of the medical output. Here, we devise a novel Deep Convolutional Network model along with the optimal learning rate of the Rectified Linear Unit (ReLU) intended for Medical Image Super-Resolution (MISR). For getting the optimal values of Deep Learning AlexNet structure, Modified Crow Search (MCS) is utilized, which is mainly depends on the behavior of crow sets. The chosen Alexnet lacks in a sort of suitable supervision for upgrading execution of the proposed model that effectively aims to overfit. The proposed design, i.e., MISR, named Deep Optimal Convolutional AlexNet (DOCALN), derives the optimal values of learning rates of the ReLU activation function. Based on this optimal deep learning structure, the Low Resolution (LR) medical images can be applied. Experimentation results of our proposed model are compared with variants of Convolution Neural Networks (CNN) concerning different measures such as image quality assessment, SR efficiency analysis, and execution time." @default.
- W3048802372 created "2020-08-18" @default.
- W3048802372 creator A5010247259 @default.
- W3048802372 creator A5023552618 @default.
- W3048802372 creator A5036334864 @default.
- W3048802372 creator A5041197956 @default.
- W3048802372 creator A5053209487 @default.
- W3048802372 creator A5082920406 @default.
- W3048802372 date "2020-12-04" @default.
- W3048802372 modified "2023-09-27" @default.
- W3048802372 title "Images super-resolution by optimal deep AlexNet architecture for medical application: A novel DOCALN1" @default.
- W3048802372 cites W2583148074 @default.
- W3048802372 cites W2596402752 @default.
- W3048802372 cites W2746325398 @default.
- W3048802372 cites W2752965212 @default.
- W3048802372 cites W2758095125 @default.
- W3048802372 cites W2770478850 @default.
- W3048802372 cites W2793026073 @default.
- W3048802372 cites W2794252992 @default.
- W3048802372 cites W2808006035 @default.
- W3048802372 cites W2884629980 @default.
- W3048802372 cites W2885143776 @default.
- W3048802372 cites W2885690826 @default.
- W3048802372 cites W2901280477 @default.
- W3048802372 cites W2901354392 @default.
- W3048802372 cites W2901526685 @default.
- W3048802372 cites W2963717866 @default.
- W3048802372 doi "https://doi.org/10.3233/jifs-189146" @default.
- W3048802372 hasPublicationYear "2020" @default.
- W3048802372 type Work @default.
- W3048802372 sameAs 3048802372 @default.
- W3048802372 citedByCount "12" @default.
- W3048802372 countsByYear W30488023722021 @default.
- W3048802372 countsByYear W30488023722022 @default.
- W3048802372 countsByYear W30488023722023 @default.
- W3048802372 crossrefType "journal-article" @default.
- W3048802372 hasAuthorship W3048802372A5010247259 @default.
- W3048802372 hasAuthorship W3048802372A5023552618 @default.
- W3048802372 hasAuthorship W3048802372A5036334864 @default.
- W3048802372 hasAuthorship W3048802372A5041197956 @default.
- W3048802372 hasAuthorship W3048802372A5053209487 @default.
- W3048802372 hasAuthorship W3048802372A5082920406 @default.
- W3048802372 hasConcept C108583219 @default.
- W3048802372 hasConcept C11413529 @default.
- W3048802372 hasConcept C115961682 @default.
- W3048802372 hasConcept C119857082 @default.
- W3048802372 hasConcept C124101348 @default.
- W3048802372 hasConcept C153180895 @default.
- W3048802372 hasConcept C154945302 @default.
- W3048802372 hasConcept C22019652 @default.
- W3048802372 hasConcept C41008148 @default.
- W3048802372 hasConcept C45347329 @default.
- W3048802372 hasConcept C50644808 @default.
- W3048802372 hasConcept C77088390 @default.
- W3048802372 hasConcept C81363708 @default.
- W3048802372 hasConcept C88548561 @default.
- W3048802372 hasConceptScore W3048802372C108583219 @default.
- W3048802372 hasConceptScore W3048802372C11413529 @default.
- W3048802372 hasConceptScore W3048802372C115961682 @default.
- W3048802372 hasConceptScore W3048802372C119857082 @default.
- W3048802372 hasConceptScore W3048802372C124101348 @default.
- W3048802372 hasConceptScore W3048802372C153180895 @default.
- W3048802372 hasConceptScore W3048802372C154945302 @default.
- W3048802372 hasConceptScore W3048802372C22019652 @default.
- W3048802372 hasConceptScore W3048802372C41008148 @default.
- W3048802372 hasConceptScore W3048802372C45347329 @default.
- W3048802372 hasConceptScore W3048802372C50644808 @default.
- W3048802372 hasConceptScore W3048802372C77088390 @default.
- W3048802372 hasConceptScore W3048802372C81363708 @default.
- W3048802372 hasConceptScore W3048802372C88548561 @default.
- W3048802372 hasIssue "6" @default.
- W3048802372 hasLocation W30488023721 @default.
- W3048802372 hasOpenAccess W3048802372 @default.
- W3048802372 hasPrimaryLocation W30488023721 @default.
- W3048802372 hasRelatedWork W2767651786 @default.
- W3048802372 hasRelatedWork W2997709384 @default.
- W3048802372 hasRelatedWork W3012393889 @default.
- W3048802372 hasRelatedWork W3099765033 @default.
- W3048802372 hasRelatedWork W4220996320 @default.
- W3048802372 hasRelatedWork W4283701629 @default.
- W3048802372 hasRelatedWork W4309224979 @default.
- W3048802372 hasRelatedWork W4312417841 @default.
- W3048802372 hasRelatedWork W4313289428 @default.
- W3048802372 hasRelatedWork W4317374280 @default.
- W3048802372 hasVolume "39" @default.
- W3048802372 isParatext "false" @default.
- W3048802372 isRetracted "false" @default.
- W3048802372 magId "3048802372" @default.
- W3048802372 workType "article" @default.