Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048809368> ?p ?o ?g. }
- W3048809368 abstract "Abstract Step selection analysis (SSA) is a fundamental technique for uncovering the drivers of animal movement decisions. Its typical use has been to view an animal as “selecting” each measured location, given its current (and possibly previous) locations. Although an animal is unlikely to make decisions precisely at the times its locations are measured, if data are gathered at a relatively low frequency (every few minutes or hours) this is often the best that can be done. Nowadays, though, tracking data is increasingly gathered at very high frequencies, often ≥1Hz, so it may be possible to exploit these data to perform more behaviourally-meaningful step selection analysis. Here, we present a technique to do this. We first use an existing algorithm to determine the turning-points in an animal’s movement path. We define a “step” to be a straight-line movement between successive turning-points. We then construct a generalised version of integrated SSA (iSSA), called time-varying iSSA (tiSSA), which deals with the fact that turning-points are usually irregularly spaced in time. We demonstrate the efficacy of tiSSA by application to data on both simulated animals and free-ranging goats ( Capra aegagrus hircus ), comparing our results to those of regular iSSA with locations that are separated by a constant time-interval. Using (regular) iSSA with constant time-steps can give results that are misleading compared to using tiSSA with the actual turns made by the animals. Furthermore, tiSSA can be used to infer covariates that are dependent on the time between turns, which is not possible with regular iSSA. As an example, we show that our study animals tend to spend less time between successive turns when the ground is rockier and/or the temperature is hotter. By constructing a step selection technique that works between observed turning-points of animals, we enable step selection to be used on high-frequency movement data, which are becoming increasingly prevalent in modern biologging studies. Furthermore, since turning-points can be viewed as decisions, our method places step selection analysis on a more behaviourally-meaningful footing compared to previous techniques." @default.
- W3048809368 created "2020-08-18" @default.
- W3048809368 creator A5025281787 @default.
- W3048809368 creator A5026797834 @default.
- W3048809368 creator A5028133598 @default.
- W3048809368 creator A5077181836 @default.
- W3048809368 creator A5077306226 @default.
- W3048809368 creator A5078214140 @default.
- W3048809368 creator A5079800659 @default.
- W3048809368 date "2020-08-14" @default.
- W3048809368 modified "2023-10-16" @default.
- W3048809368 title "Why did the animal turn? Time-varying step selection analysis for inference between observed turning points in high frequency data" @default.
- W3048809368 cites W1007659581 @default.
- W3048809368 cites W1498877939 @default.
- W3048809368 cites W1878602544 @default.
- W3048809368 cites W1887083495 @default.
- W3048809368 cites W1973006013 @default.
- W3048809368 cites W1978939541 @default.
- W3048809368 cites W1981107491 @default.
- W3048809368 cites W1987484626 @default.
- W3048809368 cites W1988135991 @default.
- W3048809368 cites W1998135992 @default.
- W3048809368 cites W2005291025 @default.
- W3048809368 cites W2010693304 @default.
- W3048809368 cites W202245018 @default.
- W3048809368 cites W2028644412 @default.
- W3048809368 cites W2037632996 @default.
- W3048809368 cites W2049963802 @default.
- W3048809368 cites W2051027181 @default.
- W3048809368 cites W2054742305 @default.
- W3048809368 cites W2057314736 @default.
- W3048809368 cites W2057575528 @default.
- W3048809368 cites W2057973203 @default.
- W3048809368 cites W2085914367 @default.
- W3048809368 cites W2101110877 @default.
- W3048809368 cites W2113894410 @default.
- W3048809368 cites W2118009719 @default.
- W3048809368 cites W2118447170 @default.
- W3048809368 cites W2119826316 @default.
- W3048809368 cites W2120332459 @default.
- W3048809368 cites W2120553757 @default.
- W3048809368 cites W2122464112 @default.
- W3048809368 cites W2129574886 @default.
- W3048809368 cites W2134295242 @default.
- W3048809368 cites W2136375252 @default.
- W3048809368 cites W2141760295 @default.
- W3048809368 cites W2144380818 @default.
- W3048809368 cites W2145081042 @default.
- W3048809368 cites W2145468232 @default.
- W3048809368 cites W2154892976 @default.
- W3048809368 cites W2160709992 @default.
- W3048809368 cites W2167832031 @default.
- W3048809368 cites W2171420116 @default.
- W3048809368 cites W2281654679 @default.
- W3048809368 cites W2468848198 @default.
- W3048809368 cites W2510481354 @default.
- W3048809368 cites W2570144985 @default.
- W3048809368 cites W2605631111 @default.
- W3048809368 cites W2610400581 @default.
- W3048809368 cites W2732383286 @default.
- W3048809368 cites W2766152096 @default.
- W3048809368 cites W2790872195 @default.
- W3048809368 cites W2811508026 @default.
- W3048809368 cites W2897746213 @default.
- W3048809368 cites W2901915714 @default.
- W3048809368 cites W2908102368 @default.
- W3048809368 cites W2951394506 @default.
- W3048809368 cites W2961206219 @default.
- W3048809368 cites W2969700004 @default.
- W3048809368 cites W2981525383 @default.
- W3048809368 cites W3003742029 @default.
- W3048809368 cites W3048874921 @default.
- W3048809368 doi "https://doi.org/10.1101/2020.08.13.249151" @default.
- W3048809368 hasPublicationYear "2020" @default.
- W3048809368 type Work @default.
- W3048809368 sameAs 3048809368 @default.
- W3048809368 citedByCount "2" @default.
- W3048809368 countsByYear W30488093682020 @default.
- W3048809368 countsByYear W30488093682022 @default.
- W3048809368 crossrefType "posted-content" @default.
- W3048809368 hasAuthorship W3048809368A5025281787 @default.
- W3048809368 hasAuthorship W3048809368A5026797834 @default.
- W3048809368 hasAuthorship W3048809368A5028133598 @default.
- W3048809368 hasAuthorship W3048809368A5077181836 @default.
- W3048809368 hasAuthorship W3048809368A5077306226 @default.
- W3048809368 hasAuthorship W3048809368A5078214140 @default.
- W3048809368 hasAuthorship W3048809368A5079800659 @default.
- W3048809368 hasBestOaLocation W30488093681 @default.
- W3048809368 hasConcept C107038049 @default.
- W3048809368 hasConcept C11413529 @default.
- W3048809368 hasConcept C114614502 @default.
- W3048809368 hasConcept C138885662 @default.
- W3048809368 hasConcept C154945302 @default.
- W3048809368 hasConcept C199360897 @default.
- W3048809368 hasConcept C2776214188 @default.
- W3048809368 hasConcept C2777027219 @default.
- W3048809368 hasConcept C2777735758 @default.
- W3048809368 hasConcept C2778067643 @default.
- W3048809368 hasConcept C2780226923 @default.
- W3048809368 hasConcept C33923547 @default.