Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048822897> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3048822897 endingPage "4989" @default.
- W3048822897 startingPage "4976" @default.
- W3048822897 abstract "Abstract Node‐by‐node boll mapping has been used to determine the effects of several environmental and management strategies, including irrigation rate and cultivar, on cotton ( Gossypium hirsutum L.) boll distribution. The advent of consumer 3D digital imaging may make rapid node‐by‐node mapping of greater acreage possible in the future. Effects of irrigation rate and cultivar on boll distribution were determined from line plots of node‐specific boll distribution and boll accumulation estimate data and from vertical box and whisker plots of boll fraction using data collected by a 3D sensor system to rapidly detect open bolls before harvest over three seasons. Differences were observed between the dryland (2018 only), low irrigation, and high irrigation rates in terms of boll fraction and boll accumulation for each cultivar. The low irrigation tended to produce bolls more toward the bottom of the plant, while the high irrigation produced bolls towards the top of the plant. Yield correlation between sensor obtained and manually counted measurements was strong, with r 2 values as high as 0.87. Results obtained indicated that differences among irrigation rate and cultivar were identifiable using the sensor system during the 3 yr research study. Similar systems may allow rapid, broad‐scale identification of boll distribution and yield in breeding and physiology research in the future, leading to improved identification of elite cultivars and improved management practices in cotton." @default.
- W3048822897 created "2020-08-18" @default.
- W3048822897 creator A5000603365 @default.
- W3048822897 creator A5007213509 @default.
- W3048822897 creator A5083142592 @default.
- W3048822897 creator A5088497034 @default.
- W3048822897 date "2020-10-08" @default.
- W3048822897 modified "2023-10-13" @default.
- W3048822897 title "Cotton boll distribution and yield estimation using three‐dimensional point cloud data" @default.
- W3048822897 cites W1535643925 @default.
- W3048822897 cites W1969480332 @default.
- W3048822897 cites W1975310998 @default.
- W3048822897 cites W1982026899 @default.
- W3048822897 cites W2023249586 @default.
- W3048822897 cites W2027927425 @default.
- W3048822897 cites W2032813506 @default.
- W3048822897 cites W2033170205 @default.
- W3048822897 cites W2037289091 @default.
- W3048822897 cites W2044834380 @default.
- W3048822897 cites W2059556212 @default.
- W3048822897 cites W2069615085 @default.
- W3048822897 cites W2084781688 @default.
- W3048822897 cites W2139968468 @default.
- W3048822897 cites W2145675077 @default.
- W3048822897 cites W2341097136 @default.
- W3048822897 cites W2408238308 @default.
- W3048822897 cites W2518904328 @default.
- W3048822897 cites W2546836303 @default.
- W3048822897 cites W2606008064 @default.
- W3048822897 cites W2792783324 @default.
- W3048822897 cites W2859001616 @default.
- W3048822897 cites W2903239407 @default.
- W3048822897 cites W2977443377 @default.
- W3048822897 cites W898845291 @default.
- W3048822897 doi "https://doi.org/10.1002/agj2.20412" @default.
- W3048822897 hasPublicationYear "2020" @default.
- W3048822897 type Work @default.
- W3048822897 sameAs 3048822897 @default.
- W3048822897 citedByCount "5" @default.
- W3048822897 countsByYear W30488228972021 @default.
- W3048822897 countsByYear W30488228972022 @default.
- W3048822897 countsByYear W30488228972023 @default.
- W3048822897 crossrefType "journal-article" @default.
- W3048822897 hasAuthorship W3048822897A5000603365 @default.
- W3048822897 hasAuthorship W3048822897A5007213509 @default.
- W3048822897 hasAuthorship W3048822897A5083142592 @default.
- W3048822897 hasAuthorship W3048822897A5088497034 @default.
- W3048822897 hasBestOaLocation W30488228971 @default.
- W3048822897 hasConcept C134121241 @default.
- W3048822897 hasConcept C191897082 @default.
- W3048822897 hasConcept C192562407 @default.
- W3048822897 hasConcept C197321923 @default.
- W3048822897 hasConcept C33923547 @default.
- W3048822897 hasConcept C39432304 @default.
- W3048822897 hasConcept C6557445 @default.
- W3048822897 hasConcept C86803240 @default.
- W3048822897 hasConcept C88862950 @default.
- W3048822897 hasConceptScore W3048822897C134121241 @default.
- W3048822897 hasConceptScore W3048822897C191897082 @default.
- W3048822897 hasConceptScore W3048822897C192562407 @default.
- W3048822897 hasConceptScore W3048822897C197321923 @default.
- W3048822897 hasConceptScore W3048822897C33923547 @default.
- W3048822897 hasConceptScore W3048822897C39432304 @default.
- W3048822897 hasConceptScore W3048822897C6557445 @default.
- W3048822897 hasConceptScore W3048822897C86803240 @default.
- W3048822897 hasConceptScore W3048822897C88862950 @default.
- W3048822897 hasFunder F4320332535 @default.
- W3048822897 hasIssue "6" @default.
- W3048822897 hasLocation W30488228971 @default.
- W3048822897 hasOpenAccess W3048822897 @default.
- W3048822897 hasPrimaryLocation W30488228971 @default.
- W3048822897 hasRelatedWork W1549359706 @default.
- W3048822897 hasRelatedWork W1985653416 @default.
- W3048822897 hasRelatedWork W2022235180 @default.
- W3048822897 hasRelatedWork W2056130536 @default.
- W3048822897 hasRelatedWork W2121067293 @default.
- W3048822897 hasRelatedWork W2388864357 @default.
- W3048822897 hasRelatedWork W2783786780 @default.
- W3048822897 hasRelatedWork W2793915314 @default.
- W3048822897 hasRelatedWork W2899084033 @default.
- W3048822897 hasRelatedWork W4247488263 @default.
- W3048822897 hasVolume "112" @default.
- W3048822897 isParatext "false" @default.
- W3048822897 isRetracted "false" @default.
- W3048822897 magId "3048822897" @default.
- W3048822897 workType "article" @default.