Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048846914> ?p ?o ?g. }
- W3048846914 abstract "Low-dose CT (LDCT) imaging is desirable in many clinical applications to reduce X-ray radiation dose to patients. Inspired by deep learning (DL), a recent promising direction of model-based iterative reconstruction (MBIR) methods for LDCT is via optimization-unrolling DL-regularized image reconstruction, where pre-defined image prior is replaced by learnable data-adaptive prior. However, LDCT is clinically multilevel, since clinical scans have different noise levels that depend of scanning site, patient size, and clinical task. Therefore, this work aims to develop an adaptive-hyper-parameter DL-based image reconstruction method (AHP-Net) that can handle multilevel LDCT of different noise levels. AHP-Net unrolls a half-quadratic splitting scheme with learnable image prior built on framelet filter bank, and learns a network that automatically adjusts the hyper-parameters for various noise levels. As a result, AHP-Net provides a single universal training model that can handle multilevel LDCT. Extensive experimental evaluations using clinical scans suggest that AHP-Net outperformed conventional MBIR techniques and state-of-the-art deep-learning-based methods for multilevel LDCT of different noise levels." @default.
- W3048846914 created "2020-08-18" @default.
- W3048846914 creator A5040628771 @default.
- W3048846914 creator A5050916009 @default.
- W3048846914 creator A5055538882 @default.
- W3048846914 creator A5057717244 @default.
- W3048846914 date "2020-08-11" @default.
- W3048846914 modified "2023-10-11" @default.
- W3048846914 title "AHP-Net: adaptive-hyper-parameter deep learning based image reconstruction method for multilevel low-dose CT." @default.
- W3048846914 cites W1542501370 @default.
- W3048846914 cites W1589188222 @default.
- W3048846914 cites W1676212501 @default.
- W3048846914 cites W1972150100 @default.
- W3048846914 cites W1982059935 @default.
- W3048846914 cites W1990381576 @default.
- W3048846914 cites W1993102688 @default.
- W3048846914 cites W1996726072 @default.
- W3048846914 cites W2027805700 @default.
- W3048846914 cites W2031604650 @default.
- W3048846914 cites W2042613327 @default.
- W3048846914 cites W2044774090 @default.
- W3048846914 cites W2056370875 @default.
- W3048846914 cites W2064526599 @default.
- W3048846914 cites W2065444952 @default.
- W3048846914 cites W2094366314 @default.
- W3048846914 cites W2098239148 @default.
- W3048846914 cites W2111298039 @default.
- W3048846914 cites W2118916039 @default.
- W3048846914 cites W2133665775 @default.
- W3048846914 cites W2142419873 @default.
- W3048846914 cites W2149400409 @default.
- W3048846914 cites W2152142562 @default.
- W3048846914 cites W2172112489 @default.
- W3048846914 cites W2319574734 @default.
- W3048846914 cites W2552453838 @default.
- W3048846914 cites W2552808051 @default.
- W3048846914 cites W2556016755 @default.
- W3048846914 cites W2570202822 @default.
- W3048846914 cites W2574952845 @default.
- W3048846914 cites W2584483805 @default.
- W3048846914 cites W2592978821 @default.
- W3048846914 cites W2608329453 @default.
- W3048846914 cites W2617128058 @default.
- W3048846914 cites W2743780012 @default.
- W3048846914 cites W2751563926 @default.
- W3048846914 cites W2754956769 @default.
- W3048846914 cites W2761360575 @default.
- W3048846914 cites W2766669015 @default.
- W3048846914 cites W2770205545 @default.
- W3048846914 cites W2777802649 @default.
- W3048846914 cites W2785579339 @default.
- W3048846914 cites W2899771611 @default.
- W3048846914 cites W2910263794 @default.
- W3048846914 cites W2911459672 @default.
- W3048846914 cites W2947191509 @default.
- W3048846914 cites W2962853966 @default.
- W3048846914 cites W2963446712 @default.
- W3048846914 cites W3100730608 @default.
- W3048846914 cites W3103372211 @default.
- W3048846914 cites W3103586216 @default.
- W3048846914 hasPublicationYear "2020" @default.
- W3048846914 type Work @default.
- W3048846914 sameAs 3048846914 @default.
- W3048846914 citedByCount "0" @default.
- W3048846914 crossrefType "posted-content" @default.
- W3048846914 hasAuthorship W3048846914A5040628771 @default.
- W3048846914 hasAuthorship W3048846914A5050916009 @default.
- W3048846914 hasAuthorship W3048846914A5055538882 @default.
- W3048846914 hasAuthorship W3048846914A5057717244 @default.
- W3048846914 hasConcept C108583219 @default.
- W3048846914 hasConcept C11413529 @default.
- W3048846914 hasConcept C115961682 @default.
- W3048846914 hasConcept C119857082 @default.
- W3048846914 hasConcept C141379421 @default.
- W3048846914 hasConcept C153180895 @default.
- W3048846914 hasConcept C154945302 @default.
- W3048846914 hasConcept C41008148 @default.
- W3048846914 hasConcept C99498987 @default.
- W3048846914 hasConceptScore W3048846914C108583219 @default.
- W3048846914 hasConceptScore W3048846914C11413529 @default.
- W3048846914 hasConceptScore W3048846914C115961682 @default.
- W3048846914 hasConceptScore W3048846914C119857082 @default.
- W3048846914 hasConceptScore W3048846914C141379421 @default.
- W3048846914 hasConceptScore W3048846914C153180895 @default.
- W3048846914 hasConceptScore W3048846914C154945302 @default.
- W3048846914 hasConceptScore W3048846914C41008148 @default.
- W3048846914 hasConceptScore W3048846914C99498987 @default.
- W3048846914 hasLocation W30488469141 @default.
- W3048846914 hasOpenAccess W3048846914 @default.
- W3048846914 hasPrimaryLocation W30488469141 @default.
- W3048846914 hasRelatedWork W2041325589 @default.
- W3048846914 hasRelatedWork W2291547523 @default.
- W3048846914 hasRelatedWork W2349282589 @default.
- W3048846914 hasRelatedWork W2363060521 @default.
- W3048846914 hasRelatedWork W2598492213 @default.
- W3048846914 hasRelatedWork W2754956769 @default.
- W3048846914 hasRelatedWork W2792979456 @default.
- W3048846914 hasRelatedWork W2802021665 @default.
- W3048846914 hasRelatedWork W2905525600 @default.
- W3048846914 hasRelatedWork W2911459672 @default.