Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048860154> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3048860154 endingPage "116" @default.
- W3048860154 startingPage "107" @default.
- W3048860154 abstract "Lung Nodules detection plays an important role to detect early stage lung cancer. Early stage lung cancer detection can considerably increases the surviving rate of patients. Radiologist diagnosis the Computerized Tomography (CT) images by detecting lung nodules. This task of locating lung nodules from CT images is rigorous and becomes even more challenging due to the structure of lung parenchyma region and also due to the size of lung nodules is small even less that 3 cm. Many Computer Aided Diagnosis CAD systems were proposed to detect lung nodules to assist radiologists. Recently, Deep learning neural network has found its way into lung nodule detection system. Deep learning neural network has shown better results and performance than traditional feature extraction based lung nodule detection techniques. This paper will focus on different deep learning neural network proposed for lung nodule detection and also we will analyze the result and performance of this detection network." @default.
- W3048860154 created "2020-08-18" @default.
- W3048860154 creator A5018681910 @default.
- W3048860154 creator A5085001837 @default.
- W3048860154 creator A5091453413 @default.
- W3048860154 date "2020-08-11" @default.
- W3048860154 modified "2023-09-27" @default.
- W3048860154 title "A Comprehensive Review on Deep Learning Based Lung Nodule Detection in Computed Tomography Images" @default.
- W3048860154 cites W2322371438 @default.
- W3048860154 cites W2594257892 @default.
- W3048860154 cites W2785886479 @default.
- W3048860154 cites W2791142503 @default.
- W3048860154 cites W2801973181 @default.
- W3048860154 cites W2806695489 @default.
- W3048860154 cites W2884008556 @default.
- W3048860154 cites W2886234949 @default.
- W3048860154 cites W2894319790 @default.
- W3048860154 cites W2894713578 @default.
- W3048860154 cites W2895992674 @default.
- W3048860154 cites W2903104347 @default.
- W3048860154 cites W2903531862 @default.
- W3048860154 cites W2950550088 @default.
- W3048860154 doi "https://doi.org/10.1007/978-981-15-5400-1_12" @default.
- W3048860154 hasPublicationYear "2020" @default.
- W3048860154 type Work @default.
- W3048860154 sameAs 3048860154 @default.
- W3048860154 citedByCount "1" @default.
- W3048860154 countsByYear W30488601542023 @default.
- W3048860154 crossrefType "book-chapter" @default.
- W3048860154 hasAuthorship W3048860154A5018681910 @default.
- W3048860154 hasAuthorship W3048860154A5085001837 @default.
- W3048860154 hasAuthorship W3048860154A5091453413 @default.
- W3048860154 hasConcept C108583219 @default.
- W3048860154 hasConcept C120665830 @default.
- W3048860154 hasConcept C121332964 @default.
- W3048860154 hasConcept C126322002 @default.
- W3048860154 hasConcept C126838900 @default.
- W3048860154 hasConcept C138885662 @default.
- W3048860154 hasConcept C142724271 @default.
- W3048860154 hasConcept C146357865 @default.
- W3048860154 hasConcept C151730666 @default.
- W3048860154 hasConcept C154945302 @default.
- W3048860154 hasConcept C192209626 @default.
- W3048860154 hasConcept C196822366 @default.
- W3048860154 hasConcept C2776256026 @default.
- W3048860154 hasConcept C2776401178 @default.
- W3048860154 hasConcept C2776731575 @default.
- W3048860154 hasConcept C2777714996 @default.
- W3048860154 hasConcept C2779549770 @default.
- W3048860154 hasConcept C41008148 @default.
- W3048860154 hasConcept C41895202 @default.
- W3048860154 hasConcept C544519230 @default.
- W3048860154 hasConcept C71924100 @default.
- W3048860154 hasConcept C86803240 @default.
- W3048860154 hasConceptScore W3048860154C108583219 @default.
- W3048860154 hasConceptScore W3048860154C120665830 @default.
- W3048860154 hasConceptScore W3048860154C121332964 @default.
- W3048860154 hasConceptScore W3048860154C126322002 @default.
- W3048860154 hasConceptScore W3048860154C126838900 @default.
- W3048860154 hasConceptScore W3048860154C138885662 @default.
- W3048860154 hasConceptScore W3048860154C142724271 @default.
- W3048860154 hasConceptScore W3048860154C146357865 @default.
- W3048860154 hasConceptScore W3048860154C151730666 @default.
- W3048860154 hasConceptScore W3048860154C154945302 @default.
- W3048860154 hasConceptScore W3048860154C192209626 @default.
- W3048860154 hasConceptScore W3048860154C196822366 @default.
- W3048860154 hasConceptScore W3048860154C2776256026 @default.
- W3048860154 hasConceptScore W3048860154C2776401178 @default.
- W3048860154 hasConceptScore W3048860154C2776731575 @default.
- W3048860154 hasConceptScore W3048860154C2777714996 @default.
- W3048860154 hasConceptScore W3048860154C2779549770 @default.
- W3048860154 hasConceptScore W3048860154C41008148 @default.
- W3048860154 hasConceptScore W3048860154C41895202 @default.
- W3048860154 hasConceptScore W3048860154C544519230 @default.
- W3048860154 hasConceptScore W3048860154C71924100 @default.
- W3048860154 hasConceptScore W3048860154C86803240 @default.
- W3048860154 hasLocation W30488601541 @default.
- W3048860154 hasOpenAccess W3048860154 @default.
- W3048860154 hasPrimaryLocation W30488601541 @default.
- W3048860154 hasRelatedWork W1618097250 @default.
- W3048860154 hasRelatedWork W1965919814 @default.
- W3048860154 hasRelatedWork W2074522473 @default.
- W3048860154 hasRelatedWork W2092773215 @default.
- W3048860154 hasRelatedWork W2390216242 @default.
- W3048860154 hasRelatedWork W2789892372 @default.
- W3048860154 hasRelatedWork W2790522458 @default.
- W3048860154 hasRelatedWork W3048860154 @default.
- W3048860154 hasRelatedWork W4283160551 @default.
- W3048860154 hasRelatedWork W4297779434 @default.
- W3048860154 isParatext "false" @default.
- W3048860154 isRetracted "false" @default.
- W3048860154 magId "3048860154" @default.
- W3048860154 workType "book-chapter" @default.