Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048872039> ?p ?o ?g. }
- W3048872039 endingPage "147506" @default.
- W3048872039 startingPage "147494" @default.
- W3048872039 abstract "Apple fruits can be easily damaged, and bruises occur on peels during harvest, transportation and storage, which could decrease fruit quality. This paper proposed an apple bruise grading method based on hyperspectral imaging (HSI). The spectral information of sound apples (Yantai Fuji 8) was first captured using a hyperspectral reflectance imaging device (386-1016 nm). These apples were then mechanically damaged by the same impact forces, and the bruised regions were exposed to room temperature for at most 120 min. The spectral data of the bruised apples at four different exposure times (30 min, 60 min, 90 min and 120 min) were obtained. The spectral data were preprocessed using Procrustes analysis (PA) to enable a more diverse distribution of the spectra among different patterns. To both accurately maintain the spectral information of different patterns and reduce the dimensions of the spectra, piecewise nonlinear curve fitting (PWCF) was presented using the least squares algorithm, where the resultant fitting coefficients from different spectral intervals were catenated into a low-dimension feature descriptor. The feature descriptors were then fed to an error-correction output coding-based support vector machine (ECOC-SVM) to grade the bruised apples. To further evaluate the performance of the presented PWCF, conventional algorithms, including the successive projections algorithm (SPA), genetic algorithm (GA), principal component analysis (PCA) and kernel principal component analysis (KPCA), were introduced for comparison. Experimental results showed that the proposed method obtained the best grading accuracy (97.33%) compared to the other methods." @default.
- W3048872039 created "2020-08-18" @default.
- W3048872039 creator A5006863860 @default.
- W3048872039 creator A5016628945 @default.
- W3048872039 creator A5023191495 @default.
- W3048872039 creator A5031627300 @default.
- W3048872039 creator A5047668657 @default.
- W3048872039 creator A5058303042 @default.
- W3048872039 creator A5066997182 @default.
- W3048872039 creator A5084554054 @default.
- W3048872039 date "2020-01-01" @default.
- W3048872039 modified "2023-10-12" @default.
- W3048872039 title "Apple Bruise Grading Using Piecewise Nonlinear Curve Fitting for Hyperspectral Imaging Data" @default.
- W3048872039 cites W1052856472 @default.
- W3048872039 cites W1676820704 @default.
- W3048872039 cites W1969552073 @default.
- W3048872039 cites W1972462289 @default.
- W3048872039 cites W1972703100 @default.
- W3048872039 cites W1979032120 @default.
- W3048872039 cites W2014696066 @default.
- W3048872039 cites W2028366365 @default.
- W3048872039 cites W2044413803 @default.
- W3048872039 cites W2045283192 @default.
- W3048872039 cites W2046226699 @default.
- W3048872039 cites W2061674742 @default.
- W3048872039 cites W2074118322 @default.
- W3048872039 cites W2091443795 @default.
- W3048872039 cites W2096688831 @default.
- W3048872039 cites W2106896701 @default.
- W3048872039 cites W2107412299 @default.
- W3048872039 cites W2130081327 @default.
- W3048872039 cites W2151343566 @default.
- W3048872039 cites W2153635508 @default.
- W3048872039 cites W2473030931 @default.
- W3048872039 cites W2548106705 @default.
- W3048872039 cites W2612558730 @default.
- W3048872039 cites W2625818022 @default.
- W3048872039 cites W2736143527 @default.
- W3048872039 cites W2765385862 @default.
- W3048872039 cites W2766434242 @default.
- W3048872039 cites W2807754553 @default.
- W3048872039 cites W2891533622 @default.
- W3048872039 cites W2903658097 @default.
- W3048872039 cites W2911051723 @default.
- W3048872039 cites W2938594308 @default.
- W3048872039 cites W2953672223 @default.
- W3048872039 cites W2967703797 @default.
- W3048872039 cites W2969728861 @default.
- W3048872039 cites W33507944 @default.
- W3048872039 cites W2169096774 @default.
- W3048872039 doi "https://doi.org/10.1109/access.2020.3015808" @default.
- W3048872039 hasPublicationYear "2020" @default.
- W3048872039 type Work @default.
- W3048872039 sameAs 3048872039 @default.
- W3048872039 citedByCount "21" @default.
- W3048872039 countsByYear W30488720392021 @default.
- W3048872039 countsByYear W30488720392022 @default.
- W3048872039 countsByYear W30488720392023 @default.
- W3048872039 crossrefType "journal-article" @default.
- W3048872039 hasAuthorship W3048872039A5006863860 @default.
- W3048872039 hasAuthorship W3048872039A5016628945 @default.
- W3048872039 hasAuthorship W3048872039A5023191495 @default.
- W3048872039 hasAuthorship W3048872039A5031627300 @default.
- W3048872039 hasAuthorship W3048872039A5047668657 @default.
- W3048872039 hasAuthorship W3048872039A5058303042 @default.
- W3048872039 hasAuthorship W3048872039A5066997182 @default.
- W3048872039 hasAuthorship W3048872039A5084554054 @default.
- W3048872039 hasBestOaLocation W30488720391 @default.
- W3048872039 hasConcept C121332964 @default.
- W3048872039 hasConcept C126838900 @default.
- W3048872039 hasConcept C127313418 @default.
- W3048872039 hasConcept C127413603 @default.
- W3048872039 hasConcept C134306372 @default.
- W3048872039 hasConcept C147176958 @default.
- W3048872039 hasConcept C153180895 @default.
- W3048872039 hasConcept C154945302 @default.
- W3048872039 hasConcept C158622935 @default.
- W3048872039 hasConcept C159078339 @default.
- W3048872039 hasConcept C160633673 @default.
- W3048872039 hasConcept C164660894 @default.
- W3048872039 hasConcept C2777286243 @default.
- W3048872039 hasConcept C2781424195 @default.
- W3048872039 hasConcept C33923547 @default.
- W3048872039 hasConcept C41008148 @default.
- W3048872039 hasConcept C62520636 @default.
- W3048872039 hasConcept C62649853 @default.
- W3048872039 hasConcept C71924100 @default.
- W3048872039 hasConceptScore W3048872039C121332964 @default.
- W3048872039 hasConceptScore W3048872039C126838900 @default.
- W3048872039 hasConceptScore W3048872039C127313418 @default.
- W3048872039 hasConceptScore W3048872039C127413603 @default.
- W3048872039 hasConceptScore W3048872039C134306372 @default.
- W3048872039 hasConceptScore W3048872039C147176958 @default.
- W3048872039 hasConceptScore W3048872039C153180895 @default.
- W3048872039 hasConceptScore W3048872039C154945302 @default.
- W3048872039 hasConceptScore W3048872039C158622935 @default.
- W3048872039 hasConceptScore W3048872039C159078339 @default.
- W3048872039 hasConceptScore W3048872039C160633673 @default.