Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048872889> ?p ?o ?g. }
- W3048872889 endingPage "125402" @default.
- W3048872889 startingPage "125402" @default.
- W3048872889 abstract "• An ET assimilation system (LPJ-SM A ) is proposed suitable for water-limited areas. • LPJ-SM A couples the LPJ-DGVM model with the PT-JPL SM scheme. • Microwave remote sensing soil data SMAP is used. • The application of SMAP data improves the accuracy of the coupled ET simulation. • The spatial results of LPJ-SM A has greatest similarity to NLDAS-2 ET product with continental-scale. An accurate estimation of evapotranspiration (ET) is essential for characterizing the water budget in arid and semiarid ecosystems. Although various soil moisture data have been used to improve the hydrological process modeling, only a few studies improved ET estimation at a global scale by utilizing satellite soil moisture active passive SMAP data, particularly targeting arid and semiarid areas. To address this issue, this paper proposes a process-based assimilation scheme (LPJ-SM A ) to simulate daily ET at 0.25° spatial resolution for the water limited areas. First, an integrated model (LPJ-PM) is constructed by the updated Priestley–Taylor Jet Propulsion Laboratory model (PT-JPL SM ) and the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). As the PT-JPL SM model establishes a connection between soil moisture (SM) and ET, the SMAP data could be integrated into LPJ-PM. Second, with the estimated ET PM (3-day interval) in LPJ-PM as “observations”, the original ET LPJ (daily) estimated by LPJ-DGVM could be well constrained in a water-limited area through data assimilation. The results showed that: (1) the ET PM with SMAP information performed better and had a higher accuracy than ET LPJ . (2) After assimilating ET PM into LPJ-DGVM, the assimilated-ET (ET DA ) showed a superior performance (R = 0.75, RMSD = 0.72 mm/d) to ET LPJ (R = 0.55, RMSD = 1.02 mm/d) and ET PM (R = 0.70, RMSD = 0.93 mm/d) when evaluated against in situ observations at a 95% significance level. Our proposed assimilation system (LPJ-SM A ) was applied to arid and semiarid regions in the United States, and the results illustrate that the spatial distribution and annual value of the LPJ-SM A ET was very similar to NLDAS-2 ET products, which have a higher precision over North America than other global ‘reference’ products. The proposed LPJ-SM A system can be used to optimize model simulation performance and effectively improve ET prediction accuracy. This method can be used as an alternative to estimate global ET, especially in water-limited regions." @default.
- W3048872889 created "2020-08-18" @default.
- W3048872889 creator A5012108225 @default.
- W3048872889 creator A5046140097 @default.
- W3048872889 creator A5058975827 @default.
- W3048872889 creator A5066716873 @default.
- W3048872889 creator A5088975367 @default.
- W3048872889 date "2020-11-01" @default.
- W3048872889 modified "2023-10-12" @default.
- W3048872889 title "Improved ET assimilation through incorporating SMAP soil moisture observations using a coupled process model: A study of U.S. arid and semiarid regions" @default.
- W3048872889 cites W1246888592 @default.
- W3048872889 cites W1568600553 @default.
- W3048872889 cites W1811186882 @default.
- W3048872889 cites W1912113684 @default.
- W3048872889 cites W1943142602 @default.
- W3048872889 cites W1975768883 @default.
- W3048872889 cites W1979269223 @default.
- W3048872889 cites W1979723077 @default.
- W3048872889 cites W1982109619 @default.
- W3048872889 cites W2001284384 @default.
- W3048872889 cites W2002504308 @default.
- W3048872889 cites W2008307544 @default.
- W3048872889 cites W2008372515 @default.
- W3048872889 cites W2009104157 @default.
- W3048872889 cites W2029774704 @default.
- W3048872889 cites W2039348932 @default.
- W3048872889 cites W2043797856 @default.
- W3048872889 cites W2060218911 @default.
- W3048872889 cites W2069451844 @default.
- W3048872889 cites W2078394884 @default.
- W3048872889 cites W2078461263 @default.
- W3048872889 cites W2082609002 @default.
- W3048872889 cites W2090609279 @default.
- W3048872889 cites W2092085938 @default.
- W3048872889 cites W2093589181 @default.
- W3048872889 cites W2093659137 @default.
- W3048872889 cites W2095680278 @default.
- W3048872889 cites W2105103805 @default.
- W3048872889 cites W2108379304 @default.
- W3048872889 cites W2115584735 @default.
- W3048872889 cites W2124716103 @default.
- W3048872889 cites W2127882520 @default.
- W3048872889 cites W2129859781 @default.
- W3048872889 cites W2130515708 @default.
- W3048872889 cites W2133488074 @default.
- W3048872889 cites W2134289299 @default.
- W3048872889 cites W2138716039 @default.
- W3048872889 cites W2147347671 @default.
- W3048872889 cites W2155345342 @default.
- W3048872889 cites W2157098139 @default.
- W3048872889 cites W2158268769 @default.
- W3048872889 cites W2163606831 @default.
- W3048872889 cites W2168870036 @default.
- W3048872889 cites W2169016599 @default.
- W3048872889 cites W2169421533 @default.
- W3048872889 cites W2172396214 @default.
- W3048872889 cites W2173896314 @default.
- W3048872889 cites W2179860363 @default.
- W3048872889 cites W2190284289 @default.
- W3048872889 cites W2194926314 @default.
- W3048872889 cites W2267678540 @default.
- W3048872889 cites W2276195374 @default.
- W3048872889 cites W2338049369 @default.
- W3048872889 cites W2346046643 @default.
- W3048872889 cites W2485420366 @default.
- W3048872889 cites W2529320486 @default.
- W3048872889 cites W2548633061 @default.
- W3048872889 cites W2555627792 @default.
- W3048872889 cites W2557301182 @default.
- W3048872889 cites W2588540686 @default.
- W3048872889 cites W2607369200 @default.
- W3048872889 cites W2622143148 @default.
- W3048872889 cites W2626285998 @default.
- W3048872889 cites W2762180336 @default.
- W3048872889 cites W2765568504 @default.
- W3048872889 cites W2766249043 @default.
- W3048872889 cites W2780496495 @default.
- W3048872889 cites W2790317939 @default.
- W3048872889 cites W2885634264 @default.
- W3048872889 cites W2897297707 @default.
- W3048872889 cites W2898130258 @default.
- W3048872889 cites W2899363336 @default.
- W3048872889 cites W2910661958 @default.
- W3048872889 cites W2916134388 @default.
- W3048872889 cites W2917360514 @default.
- W3048872889 cites W2926448297 @default.
- W3048872889 cites W2937860640 @default.
- W3048872889 cites W2941039154 @default.
- W3048872889 cites W2942506406 @default.
- W3048872889 cites W2946631707 @default.
- W3048872889 cites W3000268783 @default.
- W3048872889 cites W848293733 @default.
- W3048872889 doi "https://doi.org/10.1016/j.jhydrol.2020.125402" @default.
- W3048872889 hasPublicationYear "2020" @default.
- W3048872889 type Work @default.
- W3048872889 sameAs 3048872889 @default.
- W3048872889 citedByCount "7" @default.
- W3048872889 countsByYear W30488728892021 @default.