Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048881824> ?p ?o ?g. }
- W3048881824 abstract "Abstract Colposcopy is widely used to detect cervical cancers, but experienced physicians who are needed for an accurate diagnosis are lacking in developing countries. Artificial intelligence (AI) has been recently used in computer-aided diagnosis showing remarkable promise. In this study, we developed and validated deep learning models to automatically classify cervical neoplasms on colposcopic photographs. Pre-trained convolutional neural networks were fine-tuned for two grading systems: the cervical intraepithelial neoplasia (CIN) system and the lower anogenital squamous terminology (LAST) system. The multi-class classification accuracies of the networks for the CIN system in the test dataset were 48.6 ± 1.3% by Inception-Resnet-v2 and 51.7 ± 5.2% by Resnet-152. The accuracies for the LAST system were 71.8 ± 1.8% and 74.7 ± 1.8%, respectively. The area under the curve (AUC) for discriminating high-risk lesions from low-risk lesions by Resnet-152 was 0.781 ± 0.020 for the CIN system and 0.708 ± 0.024 for the LAST system. The lesions requiring biopsy were also detected efficiently (AUC, 0.947 ± 0.030 by Resnet-152), and presented meaningfully on attention maps. These results may indicate the potential of the application of AI for automated reading of colposcopic photographs." @default.
- W3048881824 created "2020-08-18" @default.
- W3048881824 creator A5003585354 @default.
- W3048881824 creator A5004701030 @default.
- W3048881824 creator A5005078397 @default.
- W3048881824 creator A5005519951 @default.
- W3048881824 creator A5008649766 @default.
- W3048881824 creator A5025237433 @default.
- W3048881824 creator A5026956027 @default.
- W3048881824 creator A5037568792 @default.
- W3048881824 creator A5040353625 @default.
- W3048881824 creator A5048695610 @default.
- W3048881824 creator A5050392338 @default.
- W3048881824 creator A5062440301 @default.
- W3048881824 creator A5072392040 @default.
- W3048881824 creator A5073475292 @default.
- W3048881824 creator A5088383887 @default.
- W3048881824 date "2020-08-12" @default.
- W3048881824 modified "2023-10-15" @default.
- W3048881824 title "Classification of cervical neoplasms on colposcopic photography using deep learning" @default.
- W3048881824 cites W1967862947 @default.
- W3048881824 cites W1979690332 @default.
- W3048881824 cites W2006216277 @default.
- W3048881824 cites W2008958654 @default.
- W3048881824 cites W2009016015 @default.
- W3048881824 cites W2035053459 @default.
- W3048881824 cites W2075853189 @default.
- W3048881824 cites W2076657001 @default.
- W3048881824 cites W2153545592 @default.
- W3048881824 cites W2159416556 @default.
- W3048881824 cites W2172748090 @default.
- W3048881824 cites W2174023915 @default.
- W3048881824 cites W2295107390 @default.
- W3048881824 cites W2557738935 @default.
- W3048881824 cites W2581082771 @default.
- W3048881824 cites W2590417095 @default.
- W3048881824 cites W2758888915 @default.
- W3048881824 cites W2782769512 @default.
- W3048881824 cites W2803760365 @default.
- W3048881824 cites W286898004 @default.
- W3048881824 cites W2898174465 @default.
- W3048881824 cites W2908716024 @default.
- W3048881824 cites W2911605224 @default.
- W3048881824 cites W2914550345 @default.
- W3048881824 cites W2917837889 @default.
- W3048881824 cites W2934399013 @default.
- W3048881824 cites W2936815201 @default.
- W3048881824 cites W2946458538 @default.
- W3048881824 cites W2953197682 @default.
- W3048881824 cites W2964054038 @default.
- W3048881824 cites W2969704006 @default.
- W3048881824 cites W93260598 @default.
- W3048881824 doi "https://doi.org/10.1038/s41598-020-70490-4" @default.
- W3048881824 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7423899" @default.
- W3048881824 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32788635" @default.
- W3048881824 hasPublicationYear "2020" @default.
- W3048881824 type Work @default.
- W3048881824 sameAs 3048881824 @default.
- W3048881824 citedByCount "38" @default.
- W3048881824 countsByYear W30488818242021 @default.
- W3048881824 countsByYear W30488818242022 @default.
- W3048881824 countsByYear W30488818242023 @default.
- W3048881824 crossrefType "journal-article" @default.
- W3048881824 hasAuthorship W3048881824A5003585354 @default.
- W3048881824 hasAuthorship W3048881824A5004701030 @default.
- W3048881824 hasAuthorship W3048881824A5005078397 @default.
- W3048881824 hasAuthorship W3048881824A5005519951 @default.
- W3048881824 hasAuthorship W3048881824A5008649766 @default.
- W3048881824 hasAuthorship W3048881824A5025237433 @default.
- W3048881824 hasAuthorship W3048881824A5026956027 @default.
- W3048881824 hasAuthorship W3048881824A5037568792 @default.
- W3048881824 hasAuthorship W3048881824A5040353625 @default.
- W3048881824 hasAuthorship W3048881824A5048695610 @default.
- W3048881824 hasAuthorship W3048881824A5050392338 @default.
- W3048881824 hasAuthorship W3048881824A5062440301 @default.
- W3048881824 hasAuthorship W3048881824A5072392040 @default.
- W3048881824 hasAuthorship W3048881824A5073475292 @default.
- W3048881824 hasAuthorship W3048881824A5088383887 @default.
- W3048881824 hasBestOaLocation W30488818241 @default.
- W3048881824 hasConcept C108583219 @default.
- W3048881824 hasConcept C121608353 @default.
- W3048881824 hasConcept C126322002 @default.
- W3048881824 hasConcept C126838900 @default.
- W3048881824 hasConcept C127413603 @default.
- W3048881824 hasConcept C142724271 @default.
- W3048881824 hasConcept C147176958 @default.
- W3048881824 hasConcept C154945302 @default.
- W3048881824 hasConcept C18823058 @default.
- W3048881824 hasConcept C2776117191 @default.
- W3048881824 hasConcept C2776524236 @default.
- W3048881824 hasConcept C2777286243 @default.
- W3048881824 hasConcept C2777343196 @default.
- W3048881824 hasConcept C2778220009 @default.
- W3048881824 hasConcept C2944601119 @default.
- W3048881824 hasConcept C41008148 @default.
- W3048881824 hasConcept C71924100 @default.
- W3048881824 hasConcept C81363708 @default.
- W3048881824 hasConceptScore W3048881824C108583219 @default.
- W3048881824 hasConceptScore W3048881824C121608353 @default.
- W3048881824 hasConceptScore W3048881824C126322002 @default.