Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048887660> ?p ?o ?g. }
- W3048887660 endingPage "179" @default.
- W3048887660 startingPage "164" @default.
- W3048887660 abstract "To proactively assess the losses caused by the deterioration of metro tunnels during the operational period, a new method, the cloud model-based random forests (CRFs), is proposed to discuss the inconsistencies induced by mapping the monitoring data into the health rate of the metro tunnels. On top of the CRF, a self-training framework is introduced to improve the predictive accuracy and the stability of the CRF by adding more unlabeled data. The main contribution of this paper is proposing a novel CRF model along with a semisupervised approach to overcome the inapplicability of the random forests algorithm in an inconsistent small database, and to reduce the substantial time and cost for expert annotation. The results indicate that (1) the proposed CRF achieves higher accuracy and stability than random forests in predictions; (2) the CRF outperforms the other state-of-the-art methods even in a small database; (3) the self-training improved CRF keeps highly precise when the ratio of labeled to unlabeled data is no less than 1:11.4. In this study, the suggested ratio of labeled and unlabeled data is no lower than 1:5.7 to reduce the risk of wrongly forecasting a seriously damaged tunnel section as a slightly damaged tunnel section." @default.
- W3048887660 created "2020-08-18" @default.
- W3048887660 creator A5021777414 @default.
- W3048887660 creator A5024699320 @default.
- W3048887660 creator A5027268630 @default.
- W3048887660 creator A5067896213 @default.
- W3048887660 creator A5075916440 @default.
- W3048887660 date "2020-08-11" @default.
- W3048887660 modified "2023-10-16" @default.
- W3048887660 title "Tunnel condition assessment via cloud model‐based random forests and self‐training approach" @default.
- W3048887660 cites W1163403631 @default.
- W3048887660 cites W1916064950 @default.
- W3048887660 cites W1965723691 @default.
- W3048887660 cites W1968817125 @default.
- W3048887660 cites W1975829460 @default.
- W3048887660 cites W2025496434 @default.
- W3048887660 cites W2026163940 @default.
- W3048887660 cites W2028954514 @default.
- W3048887660 cites W2038914522 @default.
- W3048887660 cites W2039748792 @default.
- W3048887660 cites W2063303823 @default.
- W3048887660 cites W2076050180 @default.
- W3048887660 cites W2099972059 @default.
- W3048887660 cites W2109563136 @default.
- W3048887660 cites W2140878492 @default.
- W3048887660 cites W2171655636 @default.
- W3048887660 cites W2544251039 @default.
- W3048887660 cites W2590597334 @default.
- W3048887660 cites W2591922431 @default.
- W3048887660 cites W2606822989 @default.
- W3048887660 cites W2612159243 @default.
- W3048887660 cites W2765137096 @default.
- W3048887660 cites W2770072231 @default.
- W3048887660 cites W2770136826 @default.
- W3048887660 cites W2776541877 @default.
- W3048887660 cites W2792465570 @default.
- W3048887660 cites W2805257321 @default.
- W3048887660 cites W2892901700 @default.
- W3048887660 cites W2894703120 @default.
- W3048887660 cites W2895281799 @default.
- W3048887660 cites W2900066955 @default.
- W3048887660 cites W2901521240 @default.
- W3048887660 cites W2907453066 @default.
- W3048887660 cites W2911964244 @default.
- W3048887660 cites W2913781593 @default.
- W3048887660 cites W2950674600 @default.
- W3048887660 cites W2964277612 @default.
- W3048887660 cites W2994637710 @default.
- W3048887660 cites W3003821972 @default.
- W3048887660 cites W3009245829 @default.
- W3048887660 cites W4239808474 @default.
- W3048887660 cites W4302438448 @default.
- W3048887660 cites W4378619706 @default.
- W3048887660 doi "https://doi.org/10.1111/mice.12601" @default.
- W3048887660 hasPublicationYear "2020" @default.
- W3048887660 type Work @default.
- W3048887660 sameAs 3048887660 @default.
- W3048887660 citedByCount "25" @default.
- W3048887660 countsByYear W30488876602020 @default.
- W3048887660 countsByYear W30488876602021 @default.
- W3048887660 countsByYear W30488876602022 @default.
- W3048887660 countsByYear W30488876602023 @default.
- W3048887660 crossrefType "journal-article" @default.
- W3048887660 hasAuthorship W3048887660A5021777414 @default.
- W3048887660 hasAuthorship W3048887660A5024699320 @default.
- W3048887660 hasAuthorship W3048887660A5027268630 @default.
- W3048887660 hasAuthorship W3048887660A5067896213 @default.
- W3048887660 hasAuthorship W3048887660A5075916440 @default.
- W3048887660 hasConcept C111919701 @default.
- W3048887660 hasConcept C112972136 @default.
- W3048887660 hasConcept C11413529 @default.
- W3048887660 hasConcept C119857082 @default.
- W3048887660 hasConcept C121332964 @default.
- W3048887660 hasConcept C124101348 @default.
- W3048887660 hasConcept C152565575 @default.
- W3048887660 hasConcept C153294291 @default.
- W3048887660 hasConcept C154945302 @default.
- W3048887660 hasConcept C169258074 @default.
- W3048887660 hasConcept C2775953691 @default.
- W3048887660 hasConcept C2777211547 @default.
- W3048887660 hasConcept C2780129039 @default.
- W3048887660 hasConcept C41008148 @default.
- W3048887660 hasConcept C48103436 @default.
- W3048887660 hasConcept C51632099 @default.
- W3048887660 hasConcept C79974875 @default.
- W3048887660 hasConceptScore W3048887660C111919701 @default.
- W3048887660 hasConceptScore W3048887660C112972136 @default.
- W3048887660 hasConceptScore W3048887660C11413529 @default.
- W3048887660 hasConceptScore W3048887660C119857082 @default.
- W3048887660 hasConceptScore W3048887660C121332964 @default.
- W3048887660 hasConceptScore W3048887660C124101348 @default.
- W3048887660 hasConceptScore W3048887660C152565575 @default.
- W3048887660 hasConceptScore W3048887660C153294291 @default.
- W3048887660 hasConceptScore W3048887660C154945302 @default.
- W3048887660 hasConceptScore W3048887660C169258074 @default.
- W3048887660 hasConceptScore W3048887660C2775953691 @default.
- W3048887660 hasConceptScore W3048887660C2777211547 @default.
- W3048887660 hasConceptScore W3048887660C2780129039 @default.