Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048891512> ?p ?o ?g. }
- W3048891512 endingPage "113258" @default.
- W3048891512 startingPage "113258" @default.
- W3048891512 abstract "Abstract Biochar sequestration has gained increasing attention as a negative emissions technology to mitigate climate change. Although pyrolysis is a commercial technology, comprehensive environmental and economic assessments have been difficult to perform since biochar can be produced from a wide range of feedstocks and pyrolysis conditions. Many researchers have evaluated the environmental and economic impacts of biochar-based CO2 sequestration systems. However, most studies either worked on a single type of biomass under varying pyrolysis conditions or multiple feedstocks under the same pyrolysis conditions. To address this knowledge gap, we evaluated the energy, climate change, and economic performance of slow pyrolysis of multiple feedstocks under various processing conditions via the integration of machine learning approaches, life cycle assessment (LCA), and economic analysis. Machine learning models (i.e., random forest) were developed by fitting existing laboratory data. The models were then used to predict the yields and characteristics of biochar produced from slow pyrolysis of different feedstocks under designed processing conditions. The results were further integrated with LCA and economic analysis to compute three important metrics: energy return on investment (EROI), net global warming potential (GWP), and minimum product selling price (MPSP). The results indicate that random forest models offer good prediction accuracy for laboratory-scale (R2 = 0.78–0.87) and pilot-scale pyrolysis data (R2 = 0.45–0.65). LCA and economic analyses reveal that feedstock characteristics and pyrolysis temperature affect energy, climate change, and financial performance. Our results demonstrate slow pyrolysis of crop residues and woody wastes holds promise as an energy-producing negative emissions technology, with EROI values from 1.9 to 3.6 (without substitution) and 2.4 to 4.3 (with substitution), and GWP values from −470 kg CO2 eq/t to −200 kg CO2 eq/t (without substitution) and −1050 kg CO2 eq/t to −770 kg CO2 eq/t (with substitution). The MSPS values evaluated in this study range from $774–1256/t, depending on temperature and feedstocks. A tradeoff between environmental and economic performance is observed. The best overall energy and climate change performances are achieved via pyrolysis of lignocellulosic biomass at high temperature, while the best MPSP is achieved with the pyrolysis of sludge at low temperature." @default.
- W3048891512 created "2020-08-18" @default.
- W3048891512 creator A5004607641 @default.
- W3048891512 creator A5017852909 @default.
- W3048891512 creator A5040314767 @default.
- W3048891512 date "2020-11-01" @default.
- W3048891512 modified "2023-10-16" @default.
- W3048891512 title "Slow pyrolysis as a platform for negative emissions technology: An integration of machine learning models, life cycle assessment, and economic analysis" @default.
- W3048891512 cites W1964640953 @default.
- W3048891512 cites W1967475818 @default.
- W3048891512 cites W1970086833 @default.
- W3048891512 cites W1970364769 @default.
- W3048891512 cites W1971683894 @default.
- W3048891512 cites W1985697594 @default.
- W3048891512 cites W1989834353 @default.
- W3048891512 cites W1997425623 @default.
- W3048891512 cites W2002937744 @default.
- W3048891512 cites W2004376930 @default.
- W3048891512 cites W2032608774 @default.
- W3048891512 cites W2032813423 @default.
- W3048891512 cites W2033973429 @default.
- W3048891512 cites W2036443131 @default.
- W3048891512 cites W2044888990 @default.
- W3048891512 cites W2052053805 @default.
- W3048891512 cites W2064440614 @default.
- W3048891512 cites W2068303762 @default.
- W3048891512 cites W2091295711 @default.
- W3048891512 cites W2097457893 @default.
- W3048891512 cites W2103199339 @default.
- W3048891512 cites W2107870685 @default.
- W3048891512 cites W2193298043 @default.
- W3048891512 cites W2216536395 @default.
- W3048891512 cites W2230597320 @default.
- W3048891512 cites W2323471351 @default.
- W3048891512 cites W2490334915 @default.
- W3048891512 cites W2534810046 @default.
- W3048891512 cites W2548271655 @default.
- W3048891512 cites W2554291586 @default.
- W3048891512 cites W2590227807 @default.
- W3048891512 cites W2613572662 @default.
- W3048891512 cites W2622992136 @default.
- W3048891512 cites W2773691725 @default.
- W3048891512 cites W2795904783 @default.
- W3048891512 cites W2804406438 @default.
- W3048891512 cites W2887514966 @default.
- W3048891512 cites W2889279051 @default.
- W3048891512 cites W2891173602 @default.
- W3048891512 cites W2913226672 @default.
- W3048891512 cites W2917124566 @default.
- W3048891512 cites W2918102917 @default.
- W3048891512 cites W2950332610 @default.
- W3048891512 cites W2969707988 @default.
- W3048891512 cites W2990367159 @default.
- W3048891512 cites W348112152 @default.
- W3048891512 cites W975049931 @default.
- W3048891512 doi "https://doi.org/10.1016/j.enconman.2020.113258" @default.
- W3048891512 hasPublicationYear "2020" @default.
- W3048891512 type Work @default.
- W3048891512 sameAs 3048891512 @default.
- W3048891512 citedByCount "100" @default.
- W3048891512 countsByYear W30488915122021 @default.
- W3048891512 countsByYear W30488915122022 @default.
- W3048891512 countsByYear W30488915122023 @default.
- W3048891512 crossrefType "journal-article" @default.
- W3048891512 hasAuthorship W3048891512A5004607641 @default.
- W3048891512 hasAuthorship W3048891512A5017852909 @default.
- W3048891512 hasAuthorship W3048891512A5040314767 @default.
- W3048891512 hasConcept C127413603 @default.
- W3048891512 hasConcept C139719470 @default.
- W3048891512 hasConcept C162324750 @default.
- W3048891512 hasConcept C2778348673 @default.
- W3048891512 hasConcept C2778706760 @default.
- W3048891512 hasConcept C2985697011 @default.
- W3048891512 hasConcept C36759035 @default.
- W3048891512 hasConcept C39432304 @default.
- W3048891512 hasConcept C48824518 @default.
- W3048891512 hasConcept C548081761 @default.
- W3048891512 hasConceptScore W3048891512C127413603 @default.
- W3048891512 hasConceptScore W3048891512C139719470 @default.
- W3048891512 hasConceptScore W3048891512C162324750 @default.
- W3048891512 hasConceptScore W3048891512C2778348673 @default.
- W3048891512 hasConceptScore W3048891512C2778706760 @default.
- W3048891512 hasConceptScore W3048891512C2985697011 @default.
- W3048891512 hasConceptScore W3048891512C36759035 @default.
- W3048891512 hasConceptScore W3048891512C39432304 @default.
- W3048891512 hasConceptScore W3048891512C48824518 @default.
- W3048891512 hasConceptScore W3048891512C548081761 @default.
- W3048891512 hasFunder F4320306540 @default.
- W3048891512 hasLocation W30488915121 @default.
- W3048891512 hasOpenAccess W3048891512 @default.
- W3048891512 hasPrimaryLocation W30488915121 @default.
- W3048891512 hasRelatedWork W2501067598 @default.
- W3048891512 hasRelatedWork W2622306488 @default.
- W3048891512 hasRelatedWork W285187799 @default.
- W3048891512 hasRelatedWork W2888560091 @default.
- W3048891512 hasRelatedWork W2899084033 @default.
- W3048891512 hasRelatedWork W3037672713 @default.
- W3048891512 hasRelatedWork W3117455554 @default.