Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048896990> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3048896990 endingPage "12" @default.
- W3048896990 startingPage "1" @default.
- W3048896990 abstract "Target detection and segmentation algorithms have long been one of the main research directions in the field of computer vision, especially in the study of sea surface image understanding, these two tasks often need to consider the collaborative work at the same time, which is very high for the computing processor performance requirements. This article aims to study the deep learning sea target detection and segmentation algorithm. This paper uses wavelet transform-based filtering method for speckle noise suppression, deep learning-based method for land masking, and the target detection part uses an improved CFAR cascade algorithm. Finally, the best separable features are selected to eliminate false alarms. In order to further illustrate the feasibility of the scheme, this paper uses measured data and simulation data to verify the scheme and discusses the effect of different signal-to-noise ratio, sea target type, and attitude on the algorithm performance. The research data show that the deep learning sea target detection and segmentation algorithm has good detection performance and is generally applicable to ship target detection of different types and different attitudes. The results show that the deep learning sea target detection and segmentation algorithm fully takes into account the irregular shape and texture of the interfering target detected in the optical remote sensing image so that the accuracy rate is 32.7% higher and the efficiency is increased by about 1.3 times. The deep learning sea target detection is compared with segmentation algorithm, and it has strong target characterization ability and can be applied to ship targets of different scales." @default.
- W3048896990 created "2020-08-18" @default.
- W3048896990 creator A5025505858 @default.
- W3048896990 creator A5052267876 @default.
- W3048896990 creator A5082249844 @default.
- W3048896990 date "2020-08-12" @default.
- W3048896990 modified "2023-10-14" @default.
- W3048896990 title "Relation and Application Method of Deep Learning Sea Target Detection and Segmentation Algorithm" @default.
- W3048896990 cites W2328148566 @default.
- W3048896990 cites W2460624933 @default.
- W3048896990 cites W2486817581 @default.
- W3048896990 cites W2519231657 @default.
- W3048896990 cites W2530946288 @default.
- W3048896990 cites W2565960758 @default.
- W3048896990 cites W2587935902 @default.
- W3048896990 cites W2616020424 @default.
- W3048896990 cites W2771234496 @default.
- W3048896990 cites W2792427713 @default.
- W3048896990 cites W2903712687 @default.
- W3048896990 cites W2904482251 @default.
- W3048896990 cites W2906716584 @default.
- W3048896990 cites W4232825794 @default.
- W3048896990 doi "https://doi.org/10.1155/2020/1847517" @default.
- W3048896990 hasPublicationYear "2020" @default.
- W3048896990 type Work @default.
- W3048896990 sameAs 3048896990 @default.
- W3048896990 citedByCount "2" @default.
- W3048896990 countsByYear W30488969902021 @default.
- W3048896990 countsByYear W30488969902022 @default.
- W3048896990 crossrefType "journal-article" @default.
- W3048896990 hasAuthorship W3048896990A5025505858 @default.
- W3048896990 hasAuthorship W3048896990A5052267876 @default.
- W3048896990 hasAuthorship W3048896990A5082249844 @default.
- W3048896990 hasBestOaLocation W30488969901 @default.
- W3048896990 hasConcept C108583219 @default.
- W3048896990 hasConcept C11413529 @default.
- W3048896990 hasConcept C115961682 @default.
- W3048896990 hasConcept C124504099 @default.
- W3048896990 hasConcept C153180895 @default.
- W3048896990 hasConcept C154945302 @default.
- W3048896990 hasConcept C31972630 @default.
- W3048896990 hasConcept C41008148 @default.
- W3048896990 hasConcept C89600930 @default.
- W3048896990 hasConcept C99498987 @default.
- W3048896990 hasConceptScore W3048896990C108583219 @default.
- W3048896990 hasConceptScore W3048896990C11413529 @default.
- W3048896990 hasConceptScore W3048896990C115961682 @default.
- W3048896990 hasConceptScore W3048896990C124504099 @default.
- W3048896990 hasConceptScore W3048896990C153180895 @default.
- W3048896990 hasConceptScore W3048896990C154945302 @default.
- W3048896990 hasConceptScore W3048896990C31972630 @default.
- W3048896990 hasConceptScore W3048896990C41008148 @default.
- W3048896990 hasConceptScore W3048896990C89600930 @default.
- W3048896990 hasConceptScore W3048896990C99498987 @default.
- W3048896990 hasFunder F4320322866 @default.
- W3048896990 hasLocation W30488969901 @default.
- W3048896990 hasOpenAccess W3048896990 @default.
- W3048896990 hasPrimaryLocation W30488969901 @default.
- W3048896990 hasRelatedWork W1669643531 @default.
- W3048896990 hasRelatedWork W1721780360 @default.
- W3048896990 hasRelatedWork W2110230079 @default.
- W3048896990 hasRelatedWork W2117664411 @default.
- W3048896990 hasRelatedWork W2117933325 @default.
- W3048896990 hasRelatedWork W2122581818 @default.
- W3048896990 hasRelatedWork W2159066190 @default.
- W3048896990 hasRelatedWork W2739874619 @default.
- W3048896990 hasRelatedWork W2790662084 @default.
- W3048896990 hasRelatedWork W2948658236 @default.
- W3048896990 hasVolume "2020" @default.
- W3048896990 isParatext "false" @default.
- W3048896990 isRetracted "false" @default.
- W3048896990 magId "3048896990" @default.
- W3048896990 workType "article" @default.