Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048901360> ?p ?o ?g. }
- W3048901360 endingPage "146914" @default.
- W3048901360 startingPage "146901" @default.
- W3048901360 abstract "Wind energy plays an increasingly important role in economic development. In this study, we propose a hybrid short-term wind-speed forecasting model comprising multiscale mathematical morphological decomposition (MMMD), K-means clustering algorithm, and stacked denoising autoencoder (SDAE) networks. First, in contrast to traditional signal-decomposing tools, the original wind-speed sequence is decomposed into a series of subsequences with different frequencies and fluctuant levels using the adaptive multiscale mathematical morphological algorithm directly in the time domain. The signal does not need to be transferred from the time domain to the frequency domain; hence, the accuracy can be considerably improved. Moreover, this is the first study that uses a time domain signal-decomposing tool in a hybrid wind forecasting model. Next, the data are split into different clusters of similar frequencies and fluctuant level subsequences using the K-means algorithm. The characteristics of each cluster are then captured using the SDAE as the core forecasting unit. Finally, the predictions of all subsequences are aggregated to obtain the final wind speed. The data from two real wind turbines are used to evaluate the performance of the proposed model, and the forecasting results are compared with five different benchmark models, namely, backpropagation neural network (BPNN), stacked denoising autoencoder (SDAE), mathematical morphology-backpropagation, mathematical morphology-SDAE, and K-means-SDAE for multiple scales, and two novel hybrid wind forecasting models namely, wavelet transform (WT)-K-means-SDAE and variation mode decomposition (VMD)-K-means-long short-term memory networks (LSTMs). The results of the comparison demonstrate that the proposed model provides a short-term wind-speed forecasting method whose prediction accuracy decreases with time; however, the proposed model achieves a better performance in comparison with other exiting models. At same time, the proposed model significantly increases the prediction accuracy of wind-speed forecasting and can be a reference for future research in this area." @default.
- W3048901360 created "2020-08-18" @default.
- W3048901360 creator A5006511426 @default.
- W3048901360 creator A5028124766 @default.
- W3048901360 creator A5043490236 @default.
- W3048901360 creator A5047120802 @default.
- W3048901360 creator A5050932904 @default.
- W3048901360 date "2020-01-01" @default.
- W3048901360 modified "2023-10-17" @default.
- W3048901360 title "Short-Term Wind-Speed Forecasting Based on Multiscale Mathematical Morphological Decomposition, K-Means Clustering, and Stacked Denoising Autoencoders" @default.
- W3048901360 cites W1515650950 @default.
- W3048901360 cites W1641696774 @default.
- W3048901360 cites W1970730908 @default.
- W3048901360 cites W1982544125 @default.
- W3048901360 cites W1995623135 @default.
- W3048901360 cites W2024692966 @default.
- W3048901360 cites W2058927506 @default.
- W3048901360 cites W2059294918 @default.
- W3048901360 cites W2060606400 @default.
- W3048901360 cites W2071363389 @default.
- W3048901360 cites W2094025768 @default.
- W3048901360 cites W2141398217 @default.
- W3048901360 cites W2146892662 @default.
- W3048901360 cites W2149676403 @default.
- W3048901360 cites W2289057233 @default.
- W3048901360 cites W2619304139 @default.
- W3048901360 cites W2729912483 @default.
- W3048901360 cites W2778436178 @default.
- W3048901360 cites W2786778708 @default.
- W3048901360 cites W2906914645 @default.
- W3048901360 cites W2911867527 @default.
- W3048901360 cites W2922330848 @default.
- W3048901360 cites W2943881178 @default.
- W3048901360 cites W2963182713 @default.
- W3048901360 cites W2969345138 @default.
- W3048901360 cites W2974064661 @default.
- W3048901360 cites W2974313728 @default.
- W3048901360 doi "https://doi.org/10.1109/access.2020.3015336" @default.
- W3048901360 hasPublicationYear "2020" @default.
- W3048901360 type Work @default.
- W3048901360 sameAs 3048901360 @default.
- W3048901360 citedByCount "17" @default.
- W3048901360 countsByYear W30489013602020 @default.
- W3048901360 countsByYear W30489013602021 @default.
- W3048901360 countsByYear W30489013602022 @default.
- W3048901360 countsByYear W30489013602023 @default.
- W3048901360 crossrefType "journal-article" @default.
- W3048901360 hasAuthorship W3048901360A5006511426 @default.
- W3048901360 hasAuthorship W3048901360A5028124766 @default.
- W3048901360 hasAuthorship W3048901360A5043490236 @default.
- W3048901360 hasAuthorship W3048901360A5047120802 @default.
- W3048901360 hasAuthorship W3048901360A5050932904 @default.
- W3048901360 hasBestOaLocation W30489013601 @default.
- W3048901360 hasConcept C101738243 @default.
- W3048901360 hasConcept C11413529 @default.
- W3048901360 hasConcept C121332964 @default.
- W3048901360 hasConcept C13280743 @default.
- W3048901360 hasConcept C153180895 @default.
- W3048901360 hasConcept C153294291 @default.
- W3048901360 hasConcept C154945302 @default.
- W3048901360 hasConcept C155032097 @default.
- W3048901360 hasConcept C161067210 @default.
- W3048901360 hasConcept C163294075 @default.
- W3048901360 hasConcept C185798385 @default.
- W3048901360 hasConcept C196216189 @default.
- W3048901360 hasConcept C205649164 @default.
- W3048901360 hasConcept C41008148 @default.
- W3048901360 hasConcept C47432892 @default.
- W3048901360 hasConcept C50644808 @default.
- W3048901360 hasConcept C73555534 @default.
- W3048901360 hasConceptScore W3048901360C101738243 @default.
- W3048901360 hasConceptScore W3048901360C11413529 @default.
- W3048901360 hasConceptScore W3048901360C121332964 @default.
- W3048901360 hasConceptScore W3048901360C13280743 @default.
- W3048901360 hasConceptScore W3048901360C153180895 @default.
- W3048901360 hasConceptScore W3048901360C153294291 @default.
- W3048901360 hasConceptScore W3048901360C154945302 @default.
- W3048901360 hasConceptScore W3048901360C155032097 @default.
- W3048901360 hasConceptScore W3048901360C161067210 @default.
- W3048901360 hasConceptScore W3048901360C163294075 @default.
- W3048901360 hasConceptScore W3048901360C185798385 @default.
- W3048901360 hasConceptScore W3048901360C196216189 @default.
- W3048901360 hasConceptScore W3048901360C205649164 @default.
- W3048901360 hasConceptScore W3048901360C41008148 @default.
- W3048901360 hasConceptScore W3048901360C47432892 @default.
- W3048901360 hasConceptScore W3048901360C50644808 @default.
- W3048901360 hasConceptScore W3048901360C73555534 @default.
- W3048901360 hasFunder F4320321001 @default.
- W3048901360 hasFunder F4320321435 @default.
- W3048901360 hasFunder F4320322163 @default.
- W3048901360 hasLocation W30489013601 @default.
- W3048901360 hasOpenAccess W3048901360 @default.
- W3048901360 hasPrimaryLocation W30489013601 @default.
- W3048901360 hasRelatedWork W2024644429 @default.
- W3048901360 hasRelatedWork W2095606712 @default.
- W3048901360 hasRelatedWork W2292254049 @default.
- W3048901360 hasRelatedWork W2594268324 @default.
- W3048901360 hasRelatedWork W2776466379 @default.