Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048902670> ?p ?o ?g. }
- W3048902670 endingPage "938" @default.
- W3048902670 startingPage "923" @default.
- W3048902670 abstract "BACKGROUD AND OBJECTIVE: The control of clinical manifestation of vestibular system relies on an optimal diagnosis. This study aims to develop and test a new automated diagnostic scheme for vestibular disorder recognition. METHODS: In this study we stratify the Ellipse-fitting technique using the Video Nysta Gmographic (VNG) sequence to obtain the segmented pupil region. Furthermore, the proposed methodology enabled us to select the most optimum VNG features to effectively conduct quantitative evaluation of nystagmus signal. The proposed scheme using a multilayer neural network classifier (MNN) was tested using a dataset involving 98 patients affected by VD and 41 normal subjects. RESULTS: The new MNN scheme uses only five temporal and frequency parameters selected out of initial thirteen parameters. The scheme generated results reached 94% of classification accuracy. CONCLUSIONS: The developed expert system is promising in solving the problem of VNG analysis and achieving accurate results of vestibular disorder recognition or diagnosis comparing to other methods or classifiers." @default.
- W3048902670 created "2020-08-18" @default.
- W3048902670 creator A5000219778 @default.
- W3048902670 creator A5007949063 @default.
- W3048902670 creator A5011988746 @default.
- W3048902670 creator A5024685910 @default.
- W3048902670 creator A5052971904 @default.
- W3048902670 creator A5064266633 @default.
- W3048902670 creator A5073163982 @default.
- W3048902670 date "2020-09-19" @default.
- W3048902670 modified "2023-10-09" @default.
- W3048902670 title "Hybrid clustering system using Nystagmus parameters discrimination for vestibular disorder diagnosis" @default.
- W3048902670 cites W1277998619 @default.
- W3048902670 cites W1509059507 @default.
- W3048902670 cites W1953576300 @default.
- W3048902670 cites W2004823485 @default.
- W3048902670 cites W2019898912 @default.
- W3048902670 cites W2047432610 @default.
- W3048902670 cites W2064797360 @default.
- W3048902670 cites W2066625028 @default.
- W3048902670 cites W2086022395 @default.
- W3048902670 cites W2090425678 @default.
- W3048902670 cites W2102796633 @default.
- W3048902670 cites W2131548897 @default.
- W3048902670 cites W2155591525 @default.
- W3048902670 cites W2334999251 @default.
- W3048902670 cites W2570445619 @default.
- W3048902670 cites W2739065277 @default.
- W3048902670 cites W2793958520 @default.
- W3048902670 cites W2855812123 @default.
- W3048902670 cites W2884920748 @default.
- W3048902670 cites W2900048091 @default.
- W3048902670 cites W2901369207 @default.
- W3048902670 cites W2944642223 @default.
- W3048902670 cites W2949442988 @default.
- W3048902670 cites W2949458308 @default.
- W3048902670 cites W2963673193 @default.
- W3048902670 cites W3010868190 @default.
- W3048902670 cites W4244195598 @default.
- W3048902670 cites W4248182741 @default.
- W3048902670 cites W4250075599 @default.
- W3048902670 cites W4300521540 @default.
- W3048902670 doi "https://doi.org/10.3233/xst-200661" @default.
- W3048902670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32773399" @default.
- W3048902670 hasPublicationYear "2020" @default.
- W3048902670 type Work @default.
- W3048902670 sameAs 3048902670 @default.
- W3048902670 citedByCount "2" @default.
- W3048902670 countsByYear W30489026702022 @default.
- W3048902670 countsByYear W30489026702023 @default.
- W3048902670 crossrefType "journal-article" @default.
- W3048902670 hasAuthorship W3048902670A5000219778 @default.
- W3048902670 hasAuthorship W3048902670A5007949063 @default.
- W3048902670 hasAuthorship W3048902670A5011988746 @default.
- W3048902670 hasAuthorship W3048902670A5024685910 @default.
- W3048902670 hasAuthorship W3048902670A5052971904 @default.
- W3048902670 hasAuthorship W3048902670A5064266633 @default.
- W3048902670 hasAuthorship W3048902670A5073163982 @default.
- W3048902670 hasConcept C134306372 @default.
- W3048902670 hasConcept C153180895 @default.
- W3048902670 hasConcept C154945302 @default.
- W3048902670 hasConcept C190041318 @default.
- W3048902670 hasConcept C2524010 @default.
- W3048902670 hasConcept C2909479646 @default.
- W3048902670 hasConcept C33923547 @default.
- W3048902670 hasConcept C41008148 @default.
- W3048902670 hasConcept C50644808 @default.
- W3048902670 hasConcept C548259974 @default.
- W3048902670 hasConcept C71924100 @default.
- W3048902670 hasConcept C73555534 @default.
- W3048902670 hasConcept C74261601 @default.
- W3048902670 hasConcept C77618280 @default.
- W3048902670 hasConcept C95623464 @default.
- W3048902670 hasConceptScore W3048902670C134306372 @default.
- W3048902670 hasConceptScore W3048902670C153180895 @default.
- W3048902670 hasConceptScore W3048902670C154945302 @default.
- W3048902670 hasConceptScore W3048902670C190041318 @default.
- W3048902670 hasConceptScore W3048902670C2524010 @default.
- W3048902670 hasConceptScore W3048902670C2909479646 @default.
- W3048902670 hasConceptScore W3048902670C33923547 @default.
- W3048902670 hasConceptScore W3048902670C41008148 @default.
- W3048902670 hasConceptScore W3048902670C50644808 @default.
- W3048902670 hasConceptScore W3048902670C548259974 @default.
- W3048902670 hasConceptScore W3048902670C71924100 @default.
- W3048902670 hasConceptScore W3048902670C73555534 @default.
- W3048902670 hasConceptScore W3048902670C74261601 @default.
- W3048902670 hasConceptScore W3048902670C77618280 @default.
- W3048902670 hasConceptScore W3048902670C95623464 @default.
- W3048902670 hasIssue "5" @default.
- W3048902670 hasLocation W30489026701 @default.
- W3048902670 hasOpenAccess W3048902670 @default.
- W3048902670 hasPrimaryLocation W30489026701 @default.
- W3048902670 hasRelatedWork W2001652754 @default.
- W3048902670 hasRelatedWork W2167582322 @default.
- W3048902670 hasRelatedWork W2379065761 @default.
- W3048902670 hasRelatedWork W2549006548 @default.
- W3048902670 hasRelatedWork W2784352036 @default.
- W3048902670 hasRelatedWork W2807311372 @default.