Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048922269> ?p ?o ?g. }
- W3048922269 endingPage "4154" @default.
- W3048922269 startingPage "4154" @default.
- W3048922269 abstract "The advance in energy-sensing and smart-meter technologies have motivated the use of a Non-Intrusive Load Monitoring (NILM), a data-driven technique that recognizes active end-use appliances by analyzing the data streams coming from these devices. NILM offers an electricity consumption pattern of individual loads at consumer premises, which is crucial in the design of energy efficiency and energy demand management strategies in buildings. Appliance classification, also known as load identification is an essential sub-task for identifying the type and status of an unknown load from appliance features extracted from the aggregate power signal. Most of the existing work for appliance recognition in NILM uses a single-label learning strategy which, assumes only one appliance is active at a time. This assumption ignores the fact that multiple devices can be active simultaneously and requires a perfect event detector to recognize the appliance. In this paper proposes the Convolutional Neural Network (CNN)-based multi-label learning approach, which links multiple loads to an observed aggregate current signal. Our approach applies the Fryze power theory to decompose the current features into active and non-active components and use the Euclidean distance similarity function to transform the decomposed current into an image-like representation which, is used as input to the CNN. Experimental results suggest that the proposed approach is sufficient for recognizing multiple appliances from aggregated measurements." @default.
- W3048922269 created "2020-08-18" @default.
- W3048922269 creator A5024522295 @default.
- W3048922269 creator A5047119987 @default.
- W3048922269 date "2020-08-11" @default.
- W3048922269 modified "2023-10-01" @default.
- W3048922269 title "Multi-Label Learning for Appliance Recognition in NILM Using Fryze-Current Decomposition and Convolutional Neural Network" @default.
- W3048922269 cites W1511053376 @default.
- W3048922269 cites W1898843043 @default.
- W3048922269 cites W1966554111 @default.
- W3048922269 cites W1987077486 @default.
- W3048922269 cites W1994042232 @default.
- W3048922269 cites W1996944908 @default.
- W3048922269 cites W2016661008 @default.
- W3048922269 cites W2016897865 @default.
- W3048922269 cites W2052684427 @default.
- W3048922269 cites W2100955315 @default.
- W3048922269 cites W2101743194 @default.
- W3048922269 cites W2123910460 @default.
- W3048922269 cites W2151729265 @default.
- W3048922269 cites W2163734586 @default.
- W3048922269 cites W2198139313 @default.
- W3048922269 cites W2289387268 @default.
- W3048922269 cites W2289761462 @default.
- W3048922269 cites W2343895595 @default.
- W3048922269 cites W2465358378 @default.
- W3048922269 cites W2605243143 @default.
- W3048922269 cites W2764060181 @default.
- W3048922269 cites W2778405665 @default.
- W3048922269 cites W2784248148 @default.
- W3048922269 cites W2789937392 @default.
- W3048922269 cites W2793964145 @default.
- W3048922269 cites W2804306644 @default.
- W3048922269 cites W2807936141 @default.
- W3048922269 cites W2886986806 @default.
- W3048922269 cites W2891483719 @default.
- W3048922269 cites W2904841534 @default.
- W3048922269 cites W2950431277 @default.
- W3048922269 cites W2963703197 @default.
- W3048922269 cites W2963859933 @default.
- W3048922269 cites W2970200869 @default.
- W3048922269 cites W2986871121 @default.
- W3048922269 cites W2989738037 @default.
- W3048922269 cites W2990083057 @default.
- W3048922269 cites W2990811600 @default.
- W3048922269 cites W3006472355 @default.
- W3048922269 cites W3007992747 @default.
- W3048922269 cites W3008626953 @default.
- W3048922269 cites W3009832084 @default.
- W3048922269 cites W3022078741 @default.
- W3048922269 cites W3031669205 @default.
- W3048922269 cites W3040566078 @default.
- W3048922269 cites W3044070975 @default.
- W3048922269 cites W3103730413 @default.
- W3048922269 doi "https://doi.org/10.3390/en13164154" @default.
- W3048922269 hasPublicationYear "2020" @default.
- W3048922269 type Work @default.
- W3048922269 sameAs 3048922269 @default.
- W3048922269 citedByCount "25" @default.
- W3048922269 countsByYear W30489222692020 @default.
- W3048922269 countsByYear W30489222692021 @default.
- W3048922269 countsByYear W30489222692022 @default.
- W3048922269 countsByYear W30489222692023 @default.
- W3048922269 crossrefType "journal-article" @default.
- W3048922269 hasAuthorship W3048922269A5024522295 @default.
- W3048922269 hasAuthorship W3048922269A5047119987 @default.
- W3048922269 hasBestOaLocation W30489222691 @default.
- W3048922269 hasConcept C105795698 @default.
- W3048922269 hasConcept C116834253 @default.
- W3048922269 hasConcept C119599485 @default.
- W3048922269 hasConcept C119857082 @default.
- W3048922269 hasConcept C127413603 @default.
- W3048922269 hasConcept C138885662 @default.
- W3048922269 hasConcept C153180895 @default.
- W3048922269 hasConcept C154945302 @default.
- W3048922269 hasConcept C159985019 @default.
- W3048922269 hasConcept C186370098 @default.
- W3048922269 hasConcept C192562407 @default.
- W3048922269 hasConcept C2742236 @default.
- W3048922269 hasConcept C2776401178 @default.
- W3048922269 hasConcept C2780165032 @default.
- W3048922269 hasConcept C33923547 @default.
- W3048922269 hasConcept C41008148 @default.
- W3048922269 hasConcept C41895202 @default.
- W3048922269 hasConcept C4679612 @default.
- W3048922269 hasConcept C50644808 @default.
- W3048922269 hasConcept C59822182 @default.
- W3048922269 hasConcept C81363708 @default.
- W3048922269 hasConcept C86803240 @default.
- W3048922269 hasConceptScore W3048922269C105795698 @default.
- W3048922269 hasConceptScore W3048922269C116834253 @default.
- W3048922269 hasConceptScore W3048922269C119599485 @default.
- W3048922269 hasConceptScore W3048922269C119857082 @default.
- W3048922269 hasConceptScore W3048922269C127413603 @default.
- W3048922269 hasConceptScore W3048922269C138885662 @default.
- W3048922269 hasConceptScore W3048922269C153180895 @default.
- W3048922269 hasConceptScore W3048922269C154945302 @default.
- W3048922269 hasConceptScore W3048922269C159985019 @default.