Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048934578> ?p ?o ?g. }
- W3048934578 endingPage "1510" @default.
- W3048934578 startingPage "1501" @default.
- W3048934578 abstract "Over the last several decades, multiple environmental issues have led to dramatic changes in the water clarity of the Great Lakes. While many of the key factors are well-known and have direct anthropogenic origins, climatic variability and change can also impact water clarity at various temporal scales, but their influence is less often studied. Building upon a recent examination of the univariate relationships between synoptic-scale weather patterns and water clarity, this research utilizes nonlinear autoregressive models with exogenous input (NARX models) to explore the multivariate climate-to-water clarity relationship. Models trained on the observation period (1997–2016) are extrapolated back to 1979 to reconstruct a daily-scale historical water clarity dataset, and used in a reforecast mode to estimate real-time forecast skill. Of the 20 regions examined, models perform best in Lakes Michigan and Huron, especially in spring and summer. The NARX models perform better than a simple persistence model and a seasonal-trend model in nearly all regions, indicating that climate variability is a contributing factor to fluctuations in water clarity. Further, six of the 20 regions also show promise of useful forecasts to at least 1 week of lead-time, with three of those regions showing skill out to two months of lead time." @default.
- W3048934578 created "2020-08-18" @default.
- W3048934578 creator A5008722491 @default.
- W3048934578 creator A5021307876 @default.
- W3048934578 creator A5026416332 @default.
- W3048934578 creator A5028580010 @default.
- W3048934578 creator A5030670389 @default.
- W3048934578 creator A5034635720 @default.
- W3048934578 creator A5051600166 @default.
- W3048934578 creator A5087801712 @default.
- W3048934578 date "2020-12-01" @default.
- W3048934578 modified "2023-10-18" @default.
- W3048934578 title "Using machine learning to model and predict water clarity in the Great Lakes" @default.
- W3048934578 cites W1978424046 @default.
- W3048934578 cites W2019455626 @default.
- W3048934578 cites W2033333961 @default.
- W3048934578 cites W2048075560 @default.
- W3048934578 cites W2079213829 @default.
- W3048934578 cites W2094378139 @default.
- W3048934578 cites W2095694536 @default.
- W3048934578 cites W2097615965 @default.
- W3048934578 cites W2103673555 @default.
- W3048934578 cites W2105103805 @default.
- W3048934578 cites W2130224648 @default.
- W3048934578 cites W2131377030 @default.
- W3048934578 cites W2138631674 @default.
- W3048934578 cites W2143381693 @default.
- W3048934578 cites W2146110348 @default.
- W3048934578 cites W2169338747 @default.
- W3048934578 cites W2509674084 @default.
- W3048934578 cites W2567418512 @default.
- W3048934578 cites W2572057180 @default.
- W3048934578 cites W2580488417 @default.
- W3048934578 cites W2618577316 @default.
- W3048934578 cites W2793050312 @default.
- W3048934578 cites W2799851442 @default.
- W3048934578 cites W3013973951 @default.
- W3048934578 cites W966174329 @default.
- W3048934578 doi "https://doi.org/10.1016/j.jglr.2020.07.022" @default.
- W3048934578 hasPublicationYear "2020" @default.
- W3048934578 type Work @default.
- W3048934578 sameAs 3048934578 @default.
- W3048934578 citedByCount "2" @default.
- W3048934578 countsByYear W30489345782021 @default.
- W3048934578 countsByYear W30489345782023 @default.
- W3048934578 crossrefType "journal-article" @default.
- W3048934578 hasAuthorship W3048934578A5008722491 @default.
- W3048934578 hasAuthorship W3048934578A5021307876 @default.
- W3048934578 hasAuthorship W3048934578A5026416332 @default.
- W3048934578 hasAuthorship W3048934578A5028580010 @default.
- W3048934578 hasAuthorship W3048934578A5030670389 @default.
- W3048934578 hasAuthorship W3048934578A5034635720 @default.
- W3048934578 hasAuthorship W3048934578A5051600166 @default.
- W3048934578 hasAuthorship W3048934578A5087801712 @default.
- W3048934578 hasBestOaLocation W30489345781 @default.
- W3048934578 hasConcept C105795698 @default.
- W3048934578 hasConcept C111368507 @default.
- W3048934578 hasConcept C119857082 @default.
- W3048934578 hasConcept C127313418 @default.
- W3048934578 hasConcept C132651083 @default.
- W3048934578 hasConcept C149782125 @default.
- W3048934578 hasConcept C153294291 @default.
- W3048934578 hasConcept C159877910 @default.
- W3048934578 hasConcept C161584116 @default.
- W3048934578 hasConcept C185592680 @default.
- W3048934578 hasConcept C197640229 @default.
- W3048934578 hasConcept C199163554 @default.
- W3048934578 hasConcept C205649164 @default.
- W3048934578 hasConcept C2777146004 @default.
- W3048934578 hasConcept C2778755073 @default.
- W3048934578 hasConcept C33923547 @default.
- W3048934578 hasConcept C39432304 @default.
- W3048934578 hasConcept C41008148 @default.
- W3048934578 hasConcept C49204034 @default.
- W3048934578 hasConcept C55493867 @default.
- W3048934578 hasConcept C58640448 @default.
- W3048934578 hasConceptScore W3048934578C105795698 @default.
- W3048934578 hasConceptScore W3048934578C111368507 @default.
- W3048934578 hasConceptScore W3048934578C119857082 @default.
- W3048934578 hasConceptScore W3048934578C127313418 @default.
- W3048934578 hasConceptScore W3048934578C132651083 @default.
- W3048934578 hasConceptScore W3048934578C149782125 @default.
- W3048934578 hasConceptScore W3048934578C153294291 @default.
- W3048934578 hasConceptScore W3048934578C159877910 @default.
- W3048934578 hasConceptScore W3048934578C161584116 @default.
- W3048934578 hasConceptScore W3048934578C185592680 @default.
- W3048934578 hasConceptScore W3048934578C197640229 @default.
- W3048934578 hasConceptScore W3048934578C199163554 @default.
- W3048934578 hasConceptScore W3048934578C205649164 @default.
- W3048934578 hasConceptScore W3048934578C2777146004 @default.
- W3048934578 hasConceptScore W3048934578C2778755073 @default.
- W3048934578 hasConceptScore W3048934578C33923547 @default.
- W3048934578 hasConceptScore W3048934578C39432304 @default.
- W3048934578 hasConceptScore W3048934578C41008148 @default.
- W3048934578 hasConceptScore W3048934578C49204034 @default.
- W3048934578 hasConceptScore W3048934578C55493867 @default.
- W3048934578 hasConceptScore W3048934578C58640448 @default.
- W3048934578 hasFunder F4320306101 @default.