Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048935632> ?p ?o ?g. }
- W3048935632 abstract "Sensor technologies allow ethologists to continuously monitor the behaviors of large numbers of animals over extended periods of time. This creates new opportunities study livestock behavior in large-scale commercial settings, but also new methodological challenges. Densely sampled behavioral data from large heterogenous groups can contain a range of complex stochastic structures that may be difficult to visualize using conventional exploratory data analysis techniques. The goal of this research was to assess the efficacy of unsupervised machine learning tools in recovering complex behavioral patterns from such datasets to better inform subsequent statistical modeling. This methodological case study was carried out using records on milking order, or the sequence in which cows arrange themselves as they enter the milking parlor. Data was collected over a 6-month period from a closed group of 200 mixed-parity Holstein cattle on an organic dairy. Cows at the front and rear of the queue proved more consistent in their entry position than animals at the center of the herd, a systematic pattern of heterogeneity seen more clearly using entropy estimates, a scale-free alternative to variance that is robust to outliers. Dimension reduction techniques were then used to visualize relationships between cows. No evidence of social cohesion was recovered, but Diffusion Map embeddings proved more adept than PCA at revealing the underlying linear geometry of this data. Median parlor entry positions from the pre- and post-pasture subperiods were highly correlated (R2=0.91), suggesting a surprising degree of temporal stationarity. Data Mechanics visualizations, however, revealed heterogenous nonstationary among subgroups of animals in the center of the group and herd-level temporal outliers. A repeated measures model recovered inconsistent evidence of a relationships between entry position and cow attributes. Mutual conditional entropy tests, a permutation-based approach to assessing bivariate correlations robust to nonindependence, confirmed a significant but nonlinear association with peak milk yield, but revealed the age effect to be potentially confounded by health status. Finally, queueing records were related back to behaviors recorded via ear tag accelerometers using linear models and mutual conditional entropy tests. Both approaches recovered consistent evidence of differences in home pen behaviors across subsections of the queue." @default.
- W3048935632 created "2020-08-18" @default.
- W3048935632 creator A5038659022 @default.
- W3048935632 creator A5068152134 @default.
- W3048935632 creator A5077617698 @default.
- W3048935632 creator A5081042763 @default.
- W3048935632 creator A5090698453 @default.
- W3048935632 date "2020-08-13" @default.
- W3048935632 modified "2023-10-17" @default.
- W3048935632 title "Mind the Queue: A Case Study in Visualizing Heterogeneous Behavioral Patterns in Livestock Sensor Data Using Unsupervised Machine Learning Techniques" @default.
- W3048935632 cites W1963866158 @default.
- W3048935632 cites W1966831094 @default.
- W3048935632 cites W1971204823 @default.
- W3048935632 cites W1979830784 @default.
- W3048935632 cites W1995875735 @default.
- W3048935632 cites W1998081783 @default.
- W3048935632 cites W2004534316 @default.
- W3048935632 cites W2006554089 @default.
- W3048935632 cites W2015628203 @default.
- W3048935632 cites W2015678706 @default.
- W3048935632 cites W2028471623 @default.
- W3048935632 cites W2048753016 @default.
- W3048935632 cites W2049246646 @default.
- W3048935632 cites W2056240834 @default.
- W3048935632 cites W2063532964 @default.
- W3048935632 cites W2069934110 @default.
- W3048935632 cites W2074966705 @default.
- W3048935632 cites W2082449953 @default.
- W3048935632 cites W2094129662 @default.
- W3048935632 cites W2138421578 @default.
- W3048935632 cites W2150808803 @default.
- W3048935632 cites W2278743506 @default.
- W3048935632 cites W2342202715 @default.
- W3048935632 cites W2480433523 @default.
- W3048935632 cites W2487770199 @default.
- W3048935632 cites W2492307518 @default.
- W3048935632 cites W2515361069 @default.
- W3048935632 cites W2555391684 @default.
- W3048935632 cites W2581974582 @default.
- W3048935632 cites W2620665478 @default.
- W3048935632 cites W2766884052 @default.
- W3048935632 cites W2901281401 @default.
- W3048935632 cites W2923774058 @default.
- W3048935632 cites W2964077200 @default.
- W3048935632 cites W2994770333 @default.
- W3048935632 cites W3098005852 @default.
- W3048935632 cites W4206439534 @default.
- W3048935632 cites W4246016631 @default.
- W3048935632 doi "https://doi.org/10.3389/fvets.2020.00523" @default.
- W3048935632 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7518149" @default.
- W3048935632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33134329" @default.
- W3048935632 hasPublicationYear "2020" @default.
- W3048935632 type Work @default.
- W3048935632 sameAs 3048935632 @default.
- W3048935632 citedByCount "10" @default.
- W3048935632 countsByYear W30489356322020 @default.
- W3048935632 countsByYear W30489356322021 @default.
- W3048935632 countsByYear W30489356322022 @default.
- W3048935632 countsByYear W30489356322023 @default.
- W3048935632 crossrefType "journal-article" @default.
- W3048935632 hasAuthorship W3048935632A5038659022 @default.
- W3048935632 hasAuthorship W3048935632A5068152134 @default.
- W3048935632 hasAuthorship W3048935632A5077617698 @default.
- W3048935632 hasAuthorship W3048935632A5081042763 @default.
- W3048935632 hasAuthorship W3048935632A5090698453 @default.
- W3048935632 hasBestOaLocation W30489356321 @default.
- W3048935632 hasConcept C105795698 @default.
- W3048935632 hasConcept C121955636 @default.
- W3048935632 hasConcept C144133560 @default.
- W3048935632 hasConcept C153180895 @default.
- W3048935632 hasConcept C154945302 @default.
- W3048935632 hasConcept C166957645 @default.
- W3048935632 hasConcept C196083921 @default.
- W3048935632 hasConcept C205649164 @default.
- W3048935632 hasConcept C2779885849 @default.
- W3048935632 hasConcept C33923547 @default.
- W3048935632 hasConcept C41008148 @default.
- W3048935632 hasConcept C79337645 @default.
- W3048935632 hasConceptScore W3048935632C105795698 @default.
- W3048935632 hasConceptScore W3048935632C121955636 @default.
- W3048935632 hasConceptScore W3048935632C144133560 @default.
- W3048935632 hasConceptScore W3048935632C153180895 @default.
- W3048935632 hasConceptScore W3048935632C154945302 @default.
- W3048935632 hasConceptScore W3048935632C166957645 @default.
- W3048935632 hasConceptScore W3048935632C196083921 @default.
- W3048935632 hasConceptScore W3048935632C205649164 @default.
- W3048935632 hasConceptScore W3048935632C2779885849 @default.
- W3048935632 hasConceptScore W3048935632C33923547 @default.
- W3048935632 hasConceptScore W3048935632C41008148 @default.
- W3048935632 hasConceptScore W3048935632C79337645 @default.
- W3048935632 hasLocation W30489356321 @default.
- W3048935632 hasLocation W30489356322 @default.
- W3048935632 hasLocation W30489356323 @default.
- W3048935632 hasLocation W30489356324 @default.
- W3048935632 hasLocation W30489356325 @default.
- W3048935632 hasOpenAccess W3048935632 @default.
- W3048935632 hasPrimaryLocation W30489356321 @default.
- W3048935632 hasRelatedWork W1605974327 @default.
- W3048935632 hasRelatedWork W2033914206 @default.
- W3048935632 hasRelatedWork W2042327336 @default.