Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048936492> ?p ?o ?g. }
- W3048936492 endingPage "187" @default.
- W3048936492 startingPage "176" @default.
- W3048936492 abstract "In this paper, we propose a Computer-Aided Detection (CAD) system based on the novel Multi-Classifier Fusion-based Classification Model (MCFM) of the breast lesions using textural features in Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI). The proposed system consists of four principal phases: Region Of Interest (ROI) segmentation, feature extraction, fusion and selection and finally Classification. We have extracted a complementary set of features from the DCE-MRI database on two statistical descriptors such as the Gray Level Co-occurrence Matrix (GLCM) and Local Binary Pattern (LBP) methods. Then, we have concatenated the extracted features using Serial method to exploit the complementary between these sets. Next, we have applied a features selection phase through Principal Component Analysis (PCA) and Feature Subset Selection (FSS) techniques to remove redundant information and improve the overall performance of breast DCE-MRI in a computer-aided system. For the classification, we have used a set of classifiers (K-Nearest Neighbors (K-NN), Support Vector Machines (SVM) and Multilayer Perceptron-Artificial Neural Network (MLP-ANN)). Then, a fusion Model between them using several metrics is applied. Experimental validation is performed over an MRI dataset, which is comprised of 286 patients with 143 Masses and 143 No Masses (Normal) breast tissues. These experiments report encouraging performances for mass detection, achieved using ten-fold cross-validation model, in terms of the averaged measurements of different metrics such as Sensitivity, Specificity, Area Under Curve (AUC) and Accuracy, which are 0.8972, 0.9572, 0.9630 and 0.9501, respectively. The proposed DCE-MRI analysis model can offer an efficient system for radiologists to identify the breast tissues." @default.
- W3048936492 created "2020-08-18" @default.
- W3048936492 creator A5008162054 @default.
- W3048936492 creator A5013835333 @default.
- W3048936492 creator A5017986656 @default.
- W3048936492 creator A5018582850 @default.
- W3048936492 creator A5051968659 @default.
- W3048936492 creator A5059604025 @default.
- W3048936492 date "2020-08-13" @default.
- W3048936492 modified "2023-09-25" @default.
- W3048936492 title "A Novel CAD System for Breast DCE-MRI Based on Textural Analysis Using Several Machine Learning Methods" @default.
- W3048936492 cites W1899510599 @default.
- W3048936492 cites W1927185672 @default.
- W3048936492 cites W1964634957 @default.
- W3048936492 cites W1966902736 @default.
- W3048936492 cites W2016648380 @default.
- W3048936492 cites W2024049367 @default.
- W3048936492 cites W2039051707 @default.
- W3048936492 cites W2059432853 @default.
- W3048936492 cites W2061690543 @default.
- W3048936492 cites W2067870011 @default.
- W3048936492 cites W2117079761 @default.
- W3048936492 cites W2134358185 @default.
- W3048936492 cites W2163012212 @default.
- W3048936492 cites W2167101736 @default.
- W3048936492 cites W2186046500 @default.
- W3048936492 cites W2529700497 @default.
- W3048936492 cites W2737813497 @default.
- W3048936492 cites W2788772714 @default.
- W3048936492 cites W2793735761 @default.
- W3048936492 cites W2802197595 @default.
- W3048936492 doi "https://doi.org/10.1007/978-3-030-49336-3_18" @default.
- W3048936492 hasPublicationYear "2020" @default.
- W3048936492 type Work @default.
- W3048936492 sameAs 3048936492 @default.
- W3048936492 citedByCount "1" @default.
- W3048936492 countsByYear W30489364922022 @default.
- W3048936492 crossrefType "book-chapter" @default.
- W3048936492 hasAuthorship W3048936492A5008162054 @default.
- W3048936492 hasAuthorship W3048936492A5013835333 @default.
- W3048936492 hasAuthorship W3048936492A5017986656 @default.
- W3048936492 hasAuthorship W3048936492A5018582850 @default.
- W3048936492 hasAuthorship W3048936492A5051968659 @default.
- W3048936492 hasAuthorship W3048936492A5059604025 @default.
- W3048936492 hasConcept C115961682 @default.
- W3048936492 hasConcept C121608353 @default.
- W3048936492 hasConcept C12267149 @default.
- W3048936492 hasConcept C126322002 @default.
- W3048936492 hasConcept C127413603 @default.
- W3048936492 hasConcept C148483581 @default.
- W3048936492 hasConcept C153180895 @default.
- W3048936492 hasConcept C154945302 @default.
- W3048936492 hasConcept C179717631 @default.
- W3048936492 hasConcept C194789388 @default.
- W3048936492 hasConcept C199639397 @default.
- W3048936492 hasConcept C27181475 @default.
- W3048936492 hasConcept C27438332 @default.
- W3048936492 hasConcept C2777111374 @default.
- W3048936492 hasConcept C2779549770 @default.
- W3048936492 hasConcept C2780472235 @default.
- W3048936492 hasConcept C41008148 @default.
- W3048936492 hasConcept C50644808 @default.
- W3048936492 hasConcept C52622490 @default.
- W3048936492 hasConcept C530470458 @default.
- W3048936492 hasConcept C53533937 @default.
- W3048936492 hasConcept C60908668 @default.
- W3048936492 hasConcept C71924100 @default.
- W3048936492 hasConcept C87335442 @default.
- W3048936492 hasConcept C89600930 @default.
- W3048936492 hasConcept C95623464 @default.
- W3048936492 hasConceptScore W3048936492C115961682 @default.
- W3048936492 hasConceptScore W3048936492C121608353 @default.
- W3048936492 hasConceptScore W3048936492C12267149 @default.
- W3048936492 hasConceptScore W3048936492C126322002 @default.
- W3048936492 hasConceptScore W3048936492C127413603 @default.
- W3048936492 hasConceptScore W3048936492C148483581 @default.
- W3048936492 hasConceptScore W3048936492C153180895 @default.
- W3048936492 hasConceptScore W3048936492C154945302 @default.
- W3048936492 hasConceptScore W3048936492C179717631 @default.
- W3048936492 hasConceptScore W3048936492C194789388 @default.
- W3048936492 hasConceptScore W3048936492C199639397 @default.
- W3048936492 hasConceptScore W3048936492C27181475 @default.
- W3048936492 hasConceptScore W3048936492C27438332 @default.
- W3048936492 hasConceptScore W3048936492C2777111374 @default.
- W3048936492 hasConceptScore W3048936492C2779549770 @default.
- W3048936492 hasConceptScore W3048936492C2780472235 @default.
- W3048936492 hasConceptScore W3048936492C41008148 @default.
- W3048936492 hasConceptScore W3048936492C50644808 @default.
- W3048936492 hasConceptScore W3048936492C52622490 @default.
- W3048936492 hasConceptScore W3048936492C530470458 @default.
- W3048936492 hasConceptScore W3048936492C53533937 @default.
- W3048936492 hasConceptScore W3048936492C60908668 @default.
- W3048936492 hasConceptScore W3048936492C71924100 @default.
- W3048936492 hasConceptScore W3048936492C87335442 @default.
- W3048936492 hasConceptScore W3048936492C89600930 @default.
- W3048936492 hasConceptScore W3048936492C95623464 @default.
- W3048936492 hasLocation W30489364921 @default.
- W3048936492 hasOpenAccess W3048936492 @default.