Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048946787> ?p ?o ?g. }
- W3048946787 abstract "Abstract Background The ongoing COVID-19 pandemic has created an urgency to identify novel vaccine targets for protective immunity against SARS-CoV-2. Early reports identify protective roles for both humoral and cell-mediated immunity for SARS-CoV-2. Methods We leveraged our bioinformatics binding prediction tools for human leukocyte antigen (HLA)-I and HLA-II alleles that were developed using mass spectrometry-based profiling of individual HLA-I and HLA-II alleles to predict peptide binding to diverse allele sets. We applied these binding predictors to viral genomes from the Coronaviridae family and specifically focused on T cell epitopes from SARS-CoV-2 proteins. We assayed a subset of these epitopes in a T cell induction assay for their ability to elicit CD8 + T cell responses. Results We first validated HLA-I and HLA-II predictions on Coronaviridae family epitopes deposited in the Virus Pathogen Database and Analysis Resource (ViPR) database. We then utilized our HLA-I and HLA-II predictors to identify 11,897 HLA-I and 8046 HLA-II candidate peptides which were highly ranked for binding across 13 open reading frames (ORFs) of SARS-CoV-2. These peptides are predicted to provide over 99% allele coverage for the US, European, and Asian populations. From our SARS-CoV-2-predicted peptide-HLA-I allele pairs, 374 pairs identically matched what was previously reported in the ViPR database, originating from other coronaviruses with identical sequences. Of these pairs, 333 (89%) had a positive HLA binding assay result, reinforcing the validity of our predictions. We then demonstrated that a subset of these highly predicted epitopes were immunogenic based on their recognition by specific CD8 + T cells in healthy human donor peripheral blood mononuclear cells (PBMCs). Finally, we characterized the expression of SARS-CoV-2 proteins in virally infected cells to prioritize those which could be potential targets for T cell immunity. Conclusions Using our bioinformatics platform, we identify multiple putative epitopes that are potential targets for CD4 + and CD8 + T cells, whose HLA binding properties cover nearly the entire population. We also confirm that our binding predictors can predict epitopes eliciting CD8 + T cell responses from multiple SARS-CoV-2 proteins. Protein expression and population HLA allele coverage, combined with the ability to identify T cell epitopes, should be considered in SARS-CoV-2 vaccine design strategies and immune monitoring." @default.
- W3048946787 created "2020-08-18" @default.
- W3048946787 creator A5004614792 @default.
- W3048946787 creator A5005942637 @default.
- W3048946787 creator A5017087433 @default.
- W3048946787 creator A5017436902 @default.
- W3048946787 creator A5026134339 @default.
- W3048946787 creator A5030778753 @default.
- W3048946787 creator A5034586905 @default.
- W3048946787 creator A5035466387 @default.
- W3048946787 creator A5050717435 @default.
- W3048946787 creator A5065343000 @default.
- W3048946787 creator A5066227109 @default.
- W3048946787 date "2020-08-13" @default.
- W3048946787 modified "2023-10-04" @default.
- W3048946787 title "Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes" @default.
- W3048946787 cites W1662940398 @default.
- W3048946787 cites W1972591948 @default.
- W3048946787 cites W1997504014 @default.
- W3048946787 cites W2006759360 @default.
- W3048946787 cites W2009483826 @default.
- W3048946787 cites W2021210077 @default.
- W3048946787 cites W2025080738 @default.
- W3048946787 cites W2033654955 @default.
- W3048946787 cites W2037286123 @default.
- W3048946787 cites W2046407551 @default.
- W3048946787 cites W2048216122 @default.
- W3048946787 cites W2053894359 @default.
- W3048946787 cites W2093356049 @default.
- W3048946787 cites W2100433256 @default.
- W3048946787 cites W2104548316 @default.
- W3048946787 cites W2116101651 @default.
- W3048946787 cites W2116586125 @default.
- W3048946787 cites W2122385038 @default.
- W3048946787 cites W2128016314 @default.
- W3048946787 cites W2139517175 @default.
- W3048946787 cites W2156273941 @default.
- W3048946787 cites W2165514480 @default.
- W3048946787 cites W2292472819 @default.
- W3048946787 cites W2404396229 @default.
- W3048946787 cites W2418601731 @default.
- W3048946787 cites W2589139221 @default.
- W3048946787 cites W2595714555 @default.
- W3048946787 cites W2898389621 @default.
- W3048946787 cites W2903899730 @default.
- W3048946787 cites W2945613628 @default.
- W3048946787 cites W2948516395 @default.
- W3048946787 cites W2971621113 @default.
- W3048946787 cites W2995389725 @default.
- W3048946787 cites W3001638293 @default.
- W3048946787 cites W3003464757 @default.
- W3048946787 cites W3004280078 @default.
- W3048946787 cites W3004318991 @default.
- W3048946787 cites W3007643904 @default.
- W3048946787 cites W3007886991 @default.
- W3048946787 cites W3009335299 @default.
- W3048946787 cites W3010238729 @default.
- W3048946787 cites W3011488280 @default.
- W3048946787 cites W3013985547 @default.
- W3048946787 cites W3014721277 @default.
- W3048946787 cites W3015321334 @default.
- W3048946787 cites W3016411238 @default.
- W3048946787 cites W3017680297 @default.
- W3048946787 cites W3021544284 @default.
- W3048946787 cites W3023975784 @default.
- W3048946787 cites W3025320502 @default.
- W3048946787 cites W3026002191 @default.
- W3048946787 cites W3035920796 @default.
- W3048946787 cites W3036361557 @default.
- W3048946787 cites W3037718428 @default.
- W3048946787 cites W3043391491 @default.
- W3048946787 cites W3122076729 @default.
- W3048946787 doi "https://doi.org/10.1186/s13073-020-00767-w" @default.
- W3048946787 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7425796" @default.
- W3048946787 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32791978" @default.
- W3048946787 hasPublicationYear "2020" @default.
- W3048946787 type Work @default.
- W3048946787 sameAs 3048946787 @default.
- W3048946787 citedByCount "70" @default.
- W3048946787 countsByYear W30489467872020 @default.
- W3048946787 countsByYear W30489467872021 @default.
- W3048946787 countsByYear W30489467872022 @default.
- W3048946787 countsByYear W30489467872023 @default.
- W3048946787 crossrefType "journal-article" @default.
- W3048946787 hasAuthorship W3048946787A5004614792 @default.
- W3048946787 hasAuthorship W3048946787A5005942637 @default.
- W3048946787 hasAuthorship W3048946787A5017087433 @default.
- W3048946787 hasAuthorship W3048946787A5017436902 @default.
- W3048946787 hasAuthorship W3048946787A5026134339 @default.
- W3048946787 hasAuthorship W3048946787A5030778753 @default.
- W3048946787 hasAuthorship W3048946787A5034586905 @default.
- W3048946787 hasAuthorship W3048946787A5035466387 @default.
- W3048946787 hasAuthorship W3048946787A5050717435 @default.
- W3048946787 hasAuthorship W3048946787A5065343000 @default.
- W3048946787 hasAuthorship W3048946787A5066227109 @default.
- W3048946787 hasBestOaLocation W30489467871 @default.
- W3048946787 hasConcept C104317684 @default.
- W3048946787 hasConcept C104397665 @default.
- W3048946787 hasConcept C142724271 @default.
- W3048946787 hasConcept C147483822 @default.