Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048950535> ?p ?o ?g. }
- W3048950535 abstract "Models are often given in terms of differential equations to represent physical systems. In the presence of uncertainty, accurate prediction of the behavior of these systems using the models requires understanding the effect of uncertainty in the response. In uncertainty quantification, statistics such as mean and variance of the response of these physical systems are sought. To estimate these statistics sampling-based methods like Monte Carlo often require many evaluations of the models' governing equations for multiple realizations of the uncertainty. However, for large complex engineering systems, these methods become computationally burdensome. In structural engineering, often an otherwise linear structure contains spatially local nonlinearities with uncertainty present in them. A standard nonlinear solver for them with sampling-based methods for uncertainty quantification incurs significant computational cost for estimating the statistics of the response. To ease this computational burden of uncertainty quantification of large-scale locally nonlinear dynamical systems, a method is proposed herein, which decomposes the response into two parts -- response of a nominal linear system and a corrective term. This corrective term is the response from a pseudoforce that contains the nonlinearity and uncertainty information. In this paper, neural network, a recently popular tool for universal function approximation in the scientific machine learning community due to the advancement of computational capability as well as the availability of open-sourced packages like PyTorch and TensorFlow is used to estimate the pseudoforce. Since only the nonlinear and uncertain pseudoforce is modeled using the neural networks the same network can be used to predict a different response of the system and hence no new network is required to train if the statistic of a different response is sought." @default.
- W3048950535 created "2020-08-18" @default.
- W3048950535 creator A5011838459 @default.
- W3048950535 date "2020-08-11" @default.
- W3048950535 modified "2023-09-26" @default.
- W3048950535 title "Uncertainty Quantification of Locally Nonlinear Dynamical Systems using Neural Networks" @default.
- W3048950535 cites W1508147193 @default.
- W3048950535 cites W1538934584 @default.
- W3048950535 cites W165058218 @default.
- W3048950535 cites W1746819321 @default.
- W3048950535 cites W1806891645 @default.
- W3048950535 cites W1904365287 @default.
- W3048950535 cites W1982886636 @default.
- W3048950535 cites W1983067771 @default.
- W3048950535 cites W1983156129 @default.
- W3048950535 cites W1990562007 @default.
- W3048950535 cites W1997512975 @default.
- W3048950535 cites W2014208555 @default.
- W3048950535 cites W2018159038 @default.
- W3048950535 cites W2025782392 @default.
- W3048950535 cites W2027197837 @default.
- W3048950535 cites W2032043551 @default.
- W3048950535 cites W2036729857 @default.
- W3048950535 cites W2038669746 @default.
- W3048950535 cites W2045325874 @default.
- W3048950535 cites W2050964107 @default.
- W3048950535 cites W2055746248 @default.
- W3048950535 cites W2069072065 @default.
- W3048950535 cites W2083845086 @default.
- W3048950535 cites W2087524586 @default.
- W3048950535 cites W2103496339 @default.
- W3048950535 cites W2194775991 @default.
- W3048950535 cites W2194820107 @default.
- W3048950535 cites W2346026520 @default.
- W3048950535 cites W2402144811 @default.
- W3048950535 cites W2471488293 @default.
- W3048950535 cites W2482051381 @default.
- W3048950535 cites W2621213434 @default.
- W3048950535 cites W2745110207 @default.
- W3048950535 cites W2766298346 @default.
- W3048950535 cites W2772097715 @default.
- W3048950535 cites W2791547487 @default.
- W3048950535 cites W2795982117 @default.
- W3048950535 cites W2809491586 @default.
- W3048950535 cites W2888239906 @default.
- W3048950535 cites W2890968382 @default.
- W3048950535 cites W2897628882 @default.
- W3048950535 cites W2899283552 @default.
- W3048950535 cites W2899771611 @default.
- W3048950535 cites W2909614798 @default.
- W3048950535 cites W2913526350 @default.
- W3048950535 cites W2915854813 @default.
- W3048950535 cites W2919958648 @default.
- W3048950535 cites W2946752227 @default.
- W3048950535 cites W2957969499 @default.
- W3048950535 cites W2963112935 @default.
- W3048950535 cites W2963459284 @default.
- W3048950535 cites W2964059111 @default.
- W3048950535 cites W2964121744 @default.
- W3048950535 cites W2971469886 @default.
- W3048950535 cites W2989144367 @default.
- W3048950535 cites W3005875659 @default.
- W3048950535 cites W3022399480 @default.
- W3048950535 cites W3022953487 @default.
- W3048950535 cites W3027712952 @default.
- W3048950535 cites W3047494561 @default.
- W3048950535 cites W3123883114 @default.
- W3048950535 cites W3146803896 @default.
- W3048950535 cites W3175958225 @default.
- W3048950535 cites W2061028639 @default.
- W3048950535 cites W2531090905 @default.
- W3048950535 doi "https://doi.org/10.48550/arxiv.2008.04598" @default.
- W3048950535 hasPublicationYear "2020" @default.
- W3048950535 type Work @default.
- W3048950535 sameAs 3048950535 @default.
- W3048950535 citedByCount "1" @default.
- W3048950535 countsByYear W30489505352021 @default.
- W3048950535 crossrefType "posted-content" @default.
- W3048950535 hasAuthorship W3048950535A5011838459 @default.
- W3048950535 hasBestOaLocation W30489505351 @default.
- W3048950535 hasConcept C105795698 @default.
- W3048950535 hasConcept C106131492 @default.
- W3048950535 hasConcept C116672817 @default.
- W3048950535 hasConcept C119857082 @default.
- W3048950535 hasConcept C121332964 @default.
- W3048950535 hasConcept C121955636 @default.
- W3048950535 hasConcept C126255220 @default.
- W3048950535 hasConcept C140779682 @default.
- W3048950535 hasConcept C144133560 @default.
- W3048950535 hasConcept C158622935 @default.
- W3048950535 hasConcept C19499675 @default.
- W3048950535 hasConcept C196083921 @default.
- W3048950535 hasConcept C199360897 @default.
- W3048950535 hasConcept C2778770139 @default.
- W3048950535 hasConcept C31972630 @default.
- W3048950535 hasConcept C32230216 @default.
- W3048950535 hasConcept C33923547 @default.
- W3048950535 hasConcept C41008148 @default.
- W3048950535 hasConcept C50644808 @default.
- W3048950535 hasConcept C52740198 @default.