Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048975096> ?p ?o ?g. }
- W3048975096 endingPage "8120" @default.
- W3048975096 startingPage "8096" @default.
- W3048975096 abstract "Remote sensing time series imagery (RSTSI) provides a useful tool for crop mapping, as it provides crucial spectral, temporal, and spatial (STS) features. However, its high dimensionality coupled with the limited number of training samples leads to an ill-posed classification problem and the Hughes phenomenon. To solve this problem, this study presents a multiple-feature-driven co-training method (MFDC) for accurately mapping crop types based on RSTSI with a limited number of training samples. In MFDC, four complementary pre-defined views, which represent STS features, are generated for the utilization of multiple features. Then, to enhance the classifier’s generalization ability, a novel labelled sample augmentation method that combines the Breaking Tiles algorithm and co-training is proposed. Third, to ensure the effectiveness of ensemble learning in co-training as well as to further speed up the learning process, a multi-view semi-supervised feature learning algorithm that expands the single view semi-supervised learning algorithm to multiple views is proposed and embedded in co-training. Finally, a weighted majority vote method is utilized to obtain the classification results. The experimental results for study areas in the United States indicate that the proposed method can accurately map crop types with a limited number of labelled training samples without a significant computational cost." @default.
- W3048975096 created "2020-08-21" @default.
- W3048975096 creator A5003240149 @default.
- W3048975096 creator A5005378500 @default.
- W3048975096 creator A5031780513 @default.
- W3048975096 creator A5074601006 @default.
- W3048975096 date "2020-08-15" @default.
- W3048975096 modified "2023-10-06" @default.
- W3048975096 title "Multiple-feature-driven co-training method for crop mapping based on remote sensing time series imagery" @default.
- W3048975096 cites W1892914854 @default.
- W3048975096 cites W1968299234 @default.
- W3048975096 cites W1976129996 @default.
- W3048975096 cites W1979644084 @default.
- W3048975096 cites W1988100102 @default.
- W3048975096 cites W1988353925 @default.
- W3048975096 cites W2006069992 @default.
- W3048975096 cites W2011787232 @default.
- W3048975096 cites W2014555541 @default.
- W3048975096 cites W2020836902 @default.
- W3048975096 cites W2023015896 @default.
- W3048975096 cites W2030165874 @default.
- W3048975096 cites W2030476695 @default.
- W3048975096 cites W2030851497 @default.
- W3048975096 cites W2037603696 @default.
- W3048975096 cites W2039609561 @default.
- W3048975096 cites W2042645898 @default.
- W3048975096 cites W2044465660 @default.
- W3048975096 cites W2048679005 @default.
- W3048975096 cites W2055505446 @default.
- W3048975096 cites W2060897350 @default.
- W3048975096 cites W2064263183 @default.
- W3048975096 cites W2068094410 @default.
- W3048975096 cites W2078283574 @default.
- W3048975096 cites W2081809992 @default.
- W3048975096 cites W2081829028 @default.
- W3048975096 cites W2085183305 @default.
- W3048975096 cites W2087874437 @default.
- W3048975096 cites W2088603520 @default.
- W3048975096 cites W2097238823 @default.
- W3048975096 cites W2098057602 @default.
- W3048975096 cites W2117996123 @default.
- W3048975096 cites W2121601221 @default.
- W3048975096 cites W2125598516 @default.
- W3048975096 cites W2130430899 @default.
- W3048975096 cites W2133556223 @default.
- W3048975096 cites W2151456308 @default.
- W3048975096 cites W2165932235 @default.
- W3048975096 cites W2169929747 @default.
- W3048975096 cites W2221744192 @default.
- W3048975096 cites W2237190528 @default.
- W3048975096 cites W2260409217 @default.
- W3048975096 cites W2307094448 @default.
- W3048975096 cites W2344328155 @default.
- W3048975096 cites W2520588193 @default.
- W3048975096 cites W2522698497 @default.
- W3048975096 cites W2574557462 @default.
- W3048975096 cites W2604086375 @default.
- W3048975096 cites W2604407846 @default.
- W3048975096 cites W2606206541 @default.
- W3048975096 cites W2612601779 @default.
- W3048975096 cites W2747751411 @default.
- W3048975096 cites W2748934424 @default.
- W3048975096 cites W2750708049 @default.
- W3048975096 cites W2792431031 @default.
- W3048975096 cites W2802758852 @default.
- W3048975096 cites W2886592274 @default.
- W3048975096 cites W2890443177 @default.
- W3048975096 cites W2898472498 @default.
- W3048975096 cites W2900217217 @default.
- W3048975096 cites W2903282641 @default.
- W3048975096 cites W2912657755 @default.
- W3048975096 cites W2963131120 @default.
- W3048975096 doi "https://doi.org/10.1080/01431161.2020.1771790" @default.
- W3048975096 hasPublicationYear "2020" @default.
- W3048975096 type Work @default.
- W3048975096 sameAs 3048975096 @default.
- W3048975096 citedByCount "7" @default.
- W3048975096 countsByYear W30489750962020 @default.
- W3048975096 countsByYear W30489750962021 @default.
- W3048975096 countsByYear W30489750962022 @default.
- W3048975096 countsByYear W30489750962023 @default.
- W3048975096 crossrefType "journal-article" @default.
- W3048975096 hasAuthorship W3048975096A5003240149 @default.
- W3048975096 hasAuthorship W3048975096A5005378500 @default.
- W3048975096 hasAuthorship W3048975096A5031780513 @default.
- W3048975096 hasAuthorship W3048975096A5074601006 @default.
- W3048975096 hasConcept C111030470 @default.
- W3048975096 hasConcept C111919701 @default.
- W3048975096 hasConcept C119857082 @default.
- W3048975096 hasConcept C124101348 @default.
- W3048975096 hasConcept C134306372 @default.
- W3048975096 hasConcept C138885662 @default.
- W3048975096 hasConcept C153180895 @default.
- W3048975096 hasConcept C153294291 @default.
- W3048975096 hasConcept C154945302 @default.
- W3048975096 hasConcept C177148314 @default.
- W3048975096 hasConcept C185592680 @default.
- W3048975096 hasConcept C198531522 @default.