Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048978098> ?p ?o ?g. }
- W3048978098 endingPage "1856" @default.
- W3048978098 startingPage "1856" @default.
- W3048978098 abstract "A sound statistical model for recovery rates is required for various applications in quantitative risk management, with the computation of capital requirements for loan portfolios as one important example. We compare different models for predicting the recovery rate on borrower level including linear and quantile regressions, decision trees, neural networks, and mixture regression models. We fit and apply these models on the worldwide largest loss and recovery data set for commercial loans provided by GCD, where we focus on small- and medium-sized entities in the US. Additionally, we include macroeconomic information via a predictive Crisis Indicator or Crisis Probability indicating whether economic downturn scenarios are expected within the time of resolution. The horserace is won by the mixture regression model which regresses the densities as well as the probabilities that an observation belongs to a certain component." @default.
- W3048978098 created "2020-08-21" @default.
- W3048978098 creator A5002948390 @default.
- W3048978098 creator A5059836870 @default.
- W3048978098 creator A5079193147 @default.
- W3048978098 creator A5085916152 @default.
- W3048978098 date "2020-10-23" @default.
- W3048978098 modified "2023-09-26" @default.
- W3048978098 title "Modeling Recovery Rates of Small- and Medium-Sized Entities in the US" @default.
- W3048978098 cites W1702032637 @default.
- W3048978098 cites W1970242716 @default.
- W3048978098 cites W1988981281 @default.
- W3048978098 cites W1997503847 @default.
- W3048978098 cites W2018730525 @default.
- W3048978098 cites W2046696485 @default.
- W3048978098 cites W2077372486 @default.
- W3048978098 cites W2126147689 @default.
- W3048978098 cites W2142635246 @default.
- W3048978098 cites W2143908786 @default.
- W3048978098 cites W2155327302 @default.
- W3048978098 cites W2159135906 @default.
- W3048978098 cites W2168175751 @default.
- W3048978098 cites W2591768545 @default.
- W3048978098 cites W2621643093 @default.
- W3048978098 cites W2912998869 @default.
- W3048978098 cites W2942670250 @default.
- W3048978098 cites W2963318064 @default.
- W3048978098 cites W3024247346 @default.
- W3048978098 cites W3122051380 @default.
- W3048978098 cites W3125012400 @default.
- W3048978098 cites W94052953 @default.
- W3048978098 doi "https://doi.org/10.3390/math8111856" @default.
- W3048978098 hasPublicationYear "2020" @default.
- W3048978098 type Work @default.
- W3048978098 sameAs 3048978098 @default.
- W3048978098 citedByCount "7" @default.
- W3048978098 countsByYear W30489780982022 @default.
- W3048978098 countsByYear W30489780982023 @default.
- W3048978098 crossrefType "journal-article" @default.
- W3048978098 hasAuthorship W3048978098A5002948390 @default.
- W3048978098 hasAuthorship W3048978098A5059836870 @default.
- W3048978098 hasAuthorship W3048978098A5079193147 @default.
- W3048978098 hasAuthorship W3048978098A5085916152 @default.
- W3048978098 hasBestOaLocation W30489780981 @default.
- W3048978098 hasConcept C10138342 @default.
- W3048978098 hasConcept C105795698 @default.
- W3048978098 hasConcept C114289077 @default.
- W3048978098 hasConcept C121332964 @default.
- W3048978098 hasConcept C149782125 @default.
- W3048978098 hasConcept C154945302 @default.
- W3048978098 hasConcept C162324750 @default.
- W3048978098 hasConcept C165556158 @default.
- W3048978098 hasConcept C168167062 @default.
- W3048978098 hasConcept C177264268 @default.
- W3048978098 hasConcept C195742910 @default.
- W3048978098 hasConcept C199360897 @default.
- W3048978098 hasConcept C2777764128 @default.
- W3048978098 hasConcept C33923547 @default.
- W3048978098 hasConcept C41008148 @default.
- W3048978098 hasConcept C63817138 @default.
- W3048978098 hasConcept C83546350 @default.
- W3048978098 hasConcept C97355855 @default.
- W3048978098 hasConceptScore W3048978098C10138342 @default.
- W3048978098 hasConceptScore W3048978098C105795698 @default.
- W3048978098 hasConceptScore W3048978098C114289077 @default.
- W3048978098 hasConceptScore W3048978098C121332964 @default.
- W3048978098 hasConceptScore W3048978098C149782125 @default.
- W3048978098 hasConceptScore W3048978098C154945302 @default.
- W3048978098 hasConceptScore W3048978098C162324750 @default.
- W3048978098 hasConceptScore W3048978098C165556158 @default.
- W3048978098 hasConceptScore W3048978098C168167062 @default.
- W3048978098 hasConceptScore W3048978098C177264268 @default.
- W3048978098 hasConceptScore W3048978098C195742910 @default.
- W3048978098 hasConceptScore W3048978098C199360897 @default.
- W3048978098 hasConceptScore W3048978098C2777764128 @default.
- W3048978098 hasConceptScore W3048978098C33923547 @default.
- W3048978098 hasConceptScore W3048978098C41008148 @default.
- W3048978098 hasConceptScore W3048978098C63817138 @default.
- W3048978098 hasConceptScore W3048978098C83546350 @default.
- W3048978098 hasConceptScore W3048978098C97355855 @default.
- W3048978098 hasIssue "11" @default.
- W3048978098 hasLocation W30489780981 @default.
- W3048978098 hasLocation W30489780982 @default.
- W3048978098 hasLocation W30489780983 @default.
- W3048978098 hasLocation W30489780984 @default.
- W3048978098 hasOpenAccess W3048978098 @default.
- W3048978098 hasPrimaryLocation W30489780981 @default.
- W3048978098 hasRelatedWork W1801096986 @default.
- W3048978098 hasRelatedWork W2079454017 @default.
- W3048978098 hasRelatedWork W2095516703 @default.
- W3048978098 hasRelatedWork W2132403600 @default.
- W3048978098 hasRelatedWork W2804154962 @default.
- W3048978098 hasRelatedWork W2911943284 @default.
- W3048978098 hasRelatedWork W3014722738 @default.
- W3048978098 hasRelatedWork W4237949580 @default.
- W3048978098 hasRelatedWork W4308624783 @default.
- W3048978098 hasRelatedWork W2052715559 @default.
- W3048978098 hasVolume "8" @default.