Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048990125> ?p ?o ?g. }
- W3048990125 abstract "Laser scanning microscopy is a powerful imaging modality ideal for monitoring spatial and temporal dynamics in both in vitro and in vivo models. To accurately resolve dynamic changes, particular to the neuroimaging field, fast acquisition rates are in great need. Unfortunately, the video-rate acquisition required to capture these changes comes with a trade-off between resolution, high spatial distortion, and low signal-to-noise ratio due to the electronics and Poisson noise. By combining microscopy fast acquisition methods with a Generative Adversarial Network (GAN), we show here, for the first time, that video-rate image acquisition, up to 20x the speed of equivalent standard high resolution acquisition, can be obtained without significant reduction in image quality. Specifically, we present a GAN based training approach that is able to simultaneously 1) super-resolve, 2) denoise and 3) correct distortion on fast scanning acquisition microscopy images. In addition, we show that our method generalizes on unseen data, requires minimal ground truth images for training and can easily be fine-tuned on different biological samples." @default.
- W3048990125 created "2020-08-21" @default.
- W3048990125 creator A5015937255 @default.
- W3048990125 creator A5018956055 @default.
- W3048990125 creator A5019512232 @default.
- W3048990125 creator A5067255019 @default.
- W3048990125 creator A5071740624 @default.
- W3048990125 creator A5090007267 @default.
- W3048990125 date "2020-10-01" @default.
- W3048990125 modified "2023-09-27" @default.
- W3048990125 title "Video-rate acquisition fluorescence microscopy via generative adversarial networks" @default.
- W3048990125 cites W1560868004 @default.
- W3048990125 cites W1824195214 @default.
- W3048990125 cites W1885185971 @default.
- W3048990125 cites W1964672368 @default.
- W3048990125 cites W1970481007 @default.
- W3048990125 cites W1973207880 @default.
- W3048990125 cites W2000676188 @default.
- W3048990125 cites W2003429530 @default.
- W3048990125 cites W2008122476 @default.
- W3048990125 cites W2018209753 @default.
- W3048990125 cites W2027053650 @default.
- W3048990125 cites W2052221650 @default.
- W3048990125 cites W2055472271 @default.
- W3048990125 cites W2055938190 @default.
- W3048990125 cites W2056370875 @default.
- W3048990125 cites W2064076387 @default.
- W3048990125 cites W2071005004 @default.
- W3048990125 cites W2072154150 @default.
- W3048990125 cites W2081049586 @default.
- W3048990125 cites W2121011070 @default.
- W3048990125 cites W2125451492 @default.
- W3048990125 cites W2127409349 @default.
- W3048990125 cites W2132036867 @default.
- W3048990125 cites W2133665775 @default.
- W3048990125 cites W2135116130 @default.
- W3048990125 cites W2147607085 @default.
- W3048990125 cites W2165267644 @default.
- W3048990125 cites W2179218972 @default.
- W3048990125 cites W2228707969 @default.
- W3048990125 cites W2279851379 @default.
- W3048990125 cites W2289351772 @default.
- W3048990125 cites W2322193408 @default.
- W3048990125 cites W2533568726 @default.
- W3048990125 cites W2626906305 @default.
- W3048990125 cites W2760605310 @default.
- W3048990125 cites W2789240594 @default.
- W3048990125 cites W2801396275 @default.
- W3048990125 cites W2804355830 @default.
- W3048990125 cites W2900977591 @default.
- W3048990125 cites W2904591139 @default.
- W3048990125 cites W2910683834 @default.
- W3048990125 cites W2960836233 @default.
- W3048990125 cites W2963571608 @default.
- W3048990125 cites W3013529009 @default.
- W3048990125 cites W3100115611 @default.
- W3048990125 cites W4231937966 @default.
- W3048990125 cites W4252712324 @default.
- W3048990125 cites W54257720 @default.
- W3048990125 doi "https://doi.org/10.1109/bibe50027.2020.00098" @default.
- W3048990125 hasPublicationYear "2020" @default.
- W3048990125 type Work @default.
- W3048990125 sameAs 3048990125 @default.
- W3048990125 citedByCount "1" @default.
- W3048990125 countsByYear W30489901252023 @default.
- W3048990125 crossrefType "proceedings-article" @default.
- W3048990125 hasAuthorship W3048990125A5015937255 @default.
- W3048990125 hasAuthorship W3048990125A5018956055 @default.
- W3048990125 hasAuthorship W3048990125A5019512232 @default.
- W3048990125 hasAuthorship W3048990125A5067255019 @default.
- W3048990125 hasAuthorship W3048990125A5071740624 @default.
- W3048990125 hasAuthorship W3048990125A5090007267 @default.
- W3048990125 hasConcept C111919701 @default.
- W3048990125 hasConcept C115961682 @default.
- W3048990125 hasConcept C119666444 @default.
- W3048990125 hasConcept C120665830 @default.
- W3048990125 hasConcept C121332964 @default.
- W3048990125 hasConcept C126780896 @default.
- W3048990125 hasConcept C147080431 @default.
- W3048990125 hasConcept C154945302 @default.
- W3048990125 hasConcept C163985040 @default.
- W3048990125 hasConcept C194257627 @default.
- W3048990125 hasConcept C205372480 @default.
- W3048990125 hasConcept C2776257435 @default.
- W3048990125 hasConcept C31972630 @default.
- W3048990125 hasConcept C41008148 @default.
- W3048990125 hasConcept C55020928 @default.
- W3048990125 hasConcept C76155785 @default.
- W3048990125 hasConcept C99498987 @default.
- W3048990125 hasConceptScore W3048990125C111919701 @default.
- W3048990125 hasConceptScore W3048990125C115961682 @default.
- W3048990125 hasConceptScore W3048990125C119666444 @default.
- W3048990125 hasConceptScore W3048990125C120665830 @default.
- W3048990125 hasConceptScore W3048990125C121332964 @default.
- W3048990125 hasConceptScore W3048990125C126780896 @default.
- W3048990125 hasConceptScore W3048990125C147080431 @default.
- W3048990125 hasConceptScore W3048990125C154945302 @default.
- W3048990125 hasConceptScore W3048990125C163985040 @default.
- W3048990125 hasConceptScore W3048990125C194257627 @default.
- W3048990125 hasConceptScore W3048990125C205372480 @default.