Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048995007> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3048995007 endingPage "109768" @default.
- W3048995007 startingPage "109768" @default.
- W3048995007 abstract "We develop a new computational approach for the speedy and accurate recovery of unknown spatially varying parameters of (stochastic) PDE models based on the sequentially arriving noisy observations of the evolving system variables. Two essential ingredients in our strategy for the identification of the target spatial fields are given by the Fourier diagonalization (FD) method and the hierarchical Bayesian model. We first apply the FD framework to perform an effectively parallelized computation in quantifying the propagating uncertainties of the dynamic variables in the Fourier space, and to facilitate a drastic saving of computational resources required for the Bayesian estimation of the associated parameters via sequential data assimilation. Yet our case study reveals that a very poor performance of the FD scheme occurs when the fast and slow variables coexist in the system evolution. The key observation is that, estimating the parameters in association with some slow variables, the FD-based Bayesian solver significantly underperforms compared to the remaining cases of faster variables. Due to this highly non-uniform discrepancy in the accuracy across distinct Fourier modes, the approximation of the parameter field cannot be so desired if the consequence is represented in the physical space. As one effort to circumvent this problem, we provide a systematic approach for a radical improvement of the naive FD technique. To do this, we make use of the hierarchical Bayesian model; it refers to the process of gradually enriching the knowledge of the unknown spatial fields from coarse to medium and to fine resolutions by using the Bayesian inference obtained at coarser levels to provide prior information for the estimation at finer levels. One major contribution of this paper is the development of a variant of the classical application of the multi-resolution approach through the close integration with the FD method, leading to the emergence of a new Bayesian paradigm for the data-driven parametric identification. Numerical experiments are performed to corroborate our demonstration concerning the efficacy and effectiveness of the proposed algorithm in obtaining a good degree of accuracy together with a significantly reduced computational cost." @default.
- W3048995007 created "2020-08-21" @default.
- W3048995007 creator A5027917522 @default.
- W3048995007 creator A5040074001 @default.
- W3048995007 creator A5081088614 @default.
- W3048995007 date "2020-12-01" @default.
- W3048995007 modified "2023-09-27" @default.
- W3048995007 title "Hierarchical sparse observation models and informative prior for Bayesian inference of spatially varying parameters" @default.
- W3048995007 cites W1964541391 @default.
- W3048995007 cites W2000267514 @default.
- W3048995007 cites W2016520450 @default.
- W3048995007 cites W2017616467 @default.
- W3048995007 cites W2022007352 @default.
- W3048995007 cites W2022023686 @default.
- W3048995007 cites W2026170388 @default.
- W3048995007 cites W2030033341 @default.
- W3048995007 cites W2031172850 @default.
- W3048995007 cites W2054453829 @default.
- W3048995007 cites W2056883816 @default.
- W3048995007 cites W2074695760 @default.
- W3048995007 cites W2076546887 @default.
- W3048995007 cites W2087435860 @default.
- W3048995007 cites W2097715923 @default.
- W3048995007 cites W2100388526 @default.
- W3048995007 cites W2102440630 @default.
- W3048995007 cites W2105934661 @default.
- W3048995007 cites W2111894040 @default.
- W3048995007 cites W2125123544 @default.
- W3048995007 cites W2126453481 @default.
- W3048995007 cites W2127921550 @default.
- W3048995007 cites W2128878127 @default.
- W3048995007 cites W2150951085 @default.
- W3048995007 cites W2162338147 @default.
- W3048995007 cites W2166896609 @default.
- W3048995007 cites W2314945980 @default.
- W3048995007 doi "https://doi.org/10.1016/j.jcp.2020.109768" @default.
- W3048995007 hasPublicationYear "2020" @default.
- W3048995007 type Work @default.
- W3048995007 sameAs 3048995007 @default.
- W3048995007 citedByCount "2" @default.
- W3048995007 countsByYear W30489950072021 @default.
- W3048995007 countsByYear W30489950072022 @default.
- W3048995007 crossrefType "journal-article" @default.
- W3048995007 hasAuthorship W3048995007A5027917522 @default.
- W3048995007 hasAuthorship W3048995007A5040074001 @default.
- W3048995007 hasAuthorship W3048995007A5081088614 @default.
- W3048995007 hasConcept C102519508 @default.
- W3048995007 hasConcept C105795698 @default.
- W3048995007 hasConcept C107673813 @default.
- W3048995007 hasConcept C11413529 @default.
- W3048995007 hasConcept C126255220 @default.
- W3048995007 hasConcept C134261354 @default.
- W3048995007 hasConcept C134306372 @default.
- W3048995007 hasConcept C154945302 @default.
- W3048995007 hasConcept C160234255 @default.
- W3048995007 hasConcept C2776214188 @default.
- W3048995007 hasConcept C2778770139 @default.
- W3048995007 hasConcept C2779377595 @default.
- W3048995007 hasConcept C33923547 @default.
- W3048995007 hasConcept C41008148 @default.
- W3048995007 hasConcept C45374587 @default.
- W3048995007 hasConcept C75172450 @default.
- W3048995007 hasConceptScore W3048995007C102519508 @default.
- W3048995007 hasConceptScore W3048995007C105795698 @default.
- W3048995007 hasConceptScore W3048995007C107673813 @default.
- W3048995007 hasConceptScore W3048995007C11413529 @default.
- W3048995007 hasConceptScore W3048995007C126255220 @default.
- W3048995007 hasConceptScore W3048995007C134261354 @default.
- W3048995007 hasConceptScore W3048995007C134306372 @default.
- W3048995007 hasConceptScore W3048995007C154945302 @default.
- W3048995007 hasConceptScore W3048995007C160234255 @default.
- W3048995007 hasConceptScore W3048995007C2776214188 @default.
- W3048995007 hasConceptScore W3048995007C2778770139 @default.
- W3048995007 hasConceptScore W3048995007C2779377595 @default.
- W3048995007 hasConceptScore W3048995007C33923547 @default.
- W3048995007 hasConceptScore W3048995007C41008148 @default.
- W3048995007 hasConceptScore W3048995007C45374587 @default.
- W3048995007 hasConceptScore W3048995007C75172450 @default.
- W3048995007 hasFunder F4320309893 @default.
- W3048995007 hasLocation W30489950071 @default.
- W3048995007 hasOpenAccess W3048995007 @default.
- W3048995007 hasPrimaryLocation W30489950071 @default.
- W3048995007 hasRelatedWork W2365458384 @default.
- W3048995007 hasRelatedWork W2607585387 @default.
- W3048995007 hasRelatedWork W2609965435 @default.
- W3048995007 hasRelatedWork W2887284286 @default.
- W3048995007 hasRelatedWork W2889562828 @default.
- W3048995007 hasRelatedWork W2896567555 @default.
- W3048995007 hasRelatedWork W2950480453 @default.
- W3048995007 hasRelatedWork W2953280030 @default.
- W3048995007 hasRelatedWork W2975462337 @default.
- W3048995007 hasRelatedWork W4288102474 @default.
- W3048995007 hasVolume "422" @default.
- W3048995007 isParatext "false" @default.
- W3048995007 isRetracted "false" @default.
- W3048995007 magId "3048995007" @default.
- W3048995007 workType "article" @default.