Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048999095> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3048999095 endingPage "79" @default.
- W3048999095 startingPage "69" @default.
- W3048999095 abstract "In this paper, the Neural Network based training algorithm has been discussed briefly. Correlation of coefficient (Training, Validation, Testing) using the Levenberg-Marquardt algorithm for superconductivity has been observed graphically. The same operation has been performed applying Bayesian Regularization algorithm and Scaled Conjugate Gradient algorithm. Mean Square Error and Regression has been calculated according to training, validation and testing using Bayesian Regularization, Scaled Conjugate Gradient and Levenberg-Marquardt algorithm for superconductor dataset. The target variable is the critical temperature of the superconductor. The regression value of Scaled Conjugate Gradient, Bayesian Regularization, Levenberg-Marquardt algorithm for superconductor dataset is 0.809214,0,0.854644, respectively which concludes that the Levenberg-Marquardt algorithm provides comparatively larger regression (R) value among them in validation state. Error histogram with 20 bins has been explained visually with simulation Bayesian Regularization, Levenberg-Marquardt, and Scaled Conjugate Gradient algorithm. Neuro-Fuzzy system structure and Self-Organizing Maps (SOM) has also been implemented in this paper which provides the supremacy of the proposed work. The main benefit of SOM is that it is a useful multivariate visualization technique that permits the multidimensional data to be exposed as a 2-dimensional map." @default.
- W3048999095 created "2020-08-21" @default.
- W3048999095 creator A5019651034 @default.
- W3048999095 creator A5024216819 @default.
- W3048999095 creator A5050008251 @default.
- W3048999095 creator A5054531439 @default.
- W3048999095 creator A5082675058 @default.
- W3048999095 date "2020-08-15" @default.
- W3048999095 modified "2023-09-27" @default.
- W3048999095 title "Comparative Performance Analysis of Neural Network Base Training Algorithm and Neuro-Fuzzy System with SOM for the Purpose of Prediction of the Features of Superconductors" @default.
- W3048999095 cites W2000437641 @default.
- W3048999095 cites W2018095177 @default.
- W3048999095 cites W2097538524 @default.
- W3048999095 cites W2099819095 @default.
- W3048999095 cites W2120533977 @default.
- W3048999095 cites W2124196693 @default.
- W3048999095 cites W2154095835 @default.
- W3048999095 cites W2155482699 @default.
- W3048999095 cites W2593074130 @default.
- W3048999095 cites W2769912520 @default.
- W3048999095 cites W2793778856 @default.
- W3048999095 cites W2799032258 @default.
- W3048999095 cites W2805033747 @default.
- W3048999095 cites W2811391524 @default.
- W3048999095 cites W2897896990 @default.
- W3048999095 cites W2977909207 @default.
- W3048999095 cites W3034206302 @default.
- W3048999095 cites W3040676006 @default.
- W3048999095 cites W3098905070 @default.
- W3048999095 cites W39251892 @default.
- W3048999095 doi "https://doi.org/10.1007/978-3-030-49342-4_7" @default.
- W3048999095 hasPublicationYear "2020" @default.
- W3048999095 type Work @default.
- W3048999095 sameAs 3048999095 @default.
- W3048999095 citedByCount "5" @default.
- W3048999095 countsByYear W30489990952020 @default.
- W3048999095 countsByYear W30489990952021 @default.
- W3048999095 countsByYear W30489990952023 @default.
- W3048999095 crossrefType "book-chapter" @default.
- W3048999095 hasAuthorship W3048999095A5019651034 @default.
- W3048999095 hasAuthorship W3048999095A5024216819 @default.
- W3048999095 hasAuthorship W3048999095A5050008251 @default.
- W3048999095 hasAuthorship W3048999095A5054531439 @default.
- W3048999095 hasAuthorship W3048999095A5082675058 @default.
- W3048999095 hasConcept C11413529 @default.
- W3048999095 hasConcept C119857082 @default.
- W3048999095 hasConcept C134306372 @default.
- W3048999095 hasConcept C154945302 @default.
- W3048999095 hasConcept C195975749 @default.
- W3048999095 hasConcept C29470771 @default.
- W3048999095 hasConcept C33923547 @default.
- W3048999095 hasConcept C41008148 @default.
- W3048999095 hasConcept C42058472 @default.
- W3048999095 hasConcept C50644808 @default.
- W3048999095 hasConcept C58166 @default.
- W3048999095 hasConceptScore W3048999095C11413529 @default.
- W3048999095 hasConceptScore W3048999095C119857082 @default.
- W3048999095 hasConceptScore W3048999095C134306372 @default.
- W3048999095 hasConceptScore W3048999095C154945302 @default.
- W3048999095 hasConceptScore W3048999095C195975749 @default.
- W3048999095 hasConceptScore W3048999095C29470771 @default.
- W3048999095 hasConceptScore W3048999095C33923547 @default.
- W3048999095 hasConceptScore W3048999095C41008148 @default.
- W3048999095 hasConceptScore W3048999095C42058472 @default.
- W3048999095 hasConceptScore W3048999095C50644808 @default.
- W3048999095 hasConceptScore W3048999095C58166 @default.
- W3048999095 hasLocation W30489990951 @default.
- W3048999095 hasOpenAccess W3048999095 @default.
- W3048999095 hasPrimaryLocation W30489990951 @default.
- W3048999095 hasRelatedWork W2123696440 @default.
- W3048999095 hasRelatedWork W2128433050 @default.
- W3048999095 hasRelatedWork W2362813665 @default.
- W3048999095 hasRelatedWork W2376343958 @default.
- W3048999095 hasRelatedWork W4205299485 @default.
- W3048999095 hasRelatedWork W594580893 @default.
- W3048999095 hasRelatedWork W87698298 @default.
- W3048999095 hasRelatedWork W1629725936 @default.
- W3048999095 hasRelatedWork W1683858715 @default.
- W3048999095 hasRelatedWork W2521192297 @default.
- W3048999095 isParatext "false" @default.
- W3048999095 isRetracted "false" @default.
- W3048999095 magId "3048999095" @default.
- W3048999095 workType "book-chapter" @default.