Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049111908> ?p ?o ?g. }
- W3049111908 endingPage "102227" @default.
- W3049111908 startingPage "102227" @default.
- W3049111908 abstract "Urban–rural fringe, which form a link between urban construction areas and rural hinterland, is the most sensitive area to urbanization. Its accurate identification is of great significance for the further study of urbanization related socio–economic and eco-environmental changes in the perspective of urban–rural contrast. Previous studies of urban–rural fringe identification had problems with narrow scope of application, low efficiency of identification, and the results were greatly influenced by subjective factors. Nighttime light, as an important product of human activities, can reflect the gradient changes of urban–rural landscapes, and can be used to identify urban–rural fringes. Therefore, a K–means–based approach was developed using Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data. Taking Beijing City as an example, in this study we delineated its urban–rural fringes. Our results indicate that a ring–shaped urban–rural fringe surrounds urban central areas, with an area of 3712 km2, which is mainly located in new urban development zones. Inside the urban–rural fringe, lights fluctuated obviously, and the fluctuation index was up to 76.75. Meanwhile, the combination of nighttime light intensity and light fluctuation had better performance than that when they were considered separately in the identification of urban–rural fringes. Furthermore, the K–means algorithm based on nighttime light found more details related to urban–rural fringes when compared with the traditional mutation detection method. This study provided an approach to identifying urban–rural fringes accurately and objectively, which is conducive to the study of eco–environmental effects in the process of urbanization." @default.
- W3049111908 created "2020-08-21" @default.
- W3049111908 creator A5021653380 @default.
- W3049111908 creator A5030157748 @default.
- W3049111908 creator A5041758527 @default.
- W3049111908 date "2020-09-01" @default.
- W3049111908 modified "2023-10-13" @default.
- W3049111908 title "Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities" @default.
- W3049111908 cites W170688067 @default.
- W3049111908 cites W1972490969 @default.
- W3049111908 cites W1976328157 @default.
- W3049111908 cites W1981939599 @default.
- W3049111908 cites W1984273924 @default.
- W3049111908 cites W1991880400 @default.
- W3049111908 cites W1999194257 @default.
- W3049111908 cites W2001075407 @default.
- W3049111908 cites W2012008555 @default.
- W3049111908 cites W2013160694 @default.
- W3049111908 cites W2014426040 @default.
- W3049111908 cites W2016943428 @default.
- W3049111908 cites W2017948225 @default.
- W3049111908 cites W2023099735 @default.
- W3049111908 cites W2041135380 @default.
- W3049111908 cites W2061687904 @default.
- W3049111908 cites W2076460333 @default.
- W3049111908 cites W2093673231 @default.
- W3049111908 cites W2140789836 @default.
- W3049111908 cites W2142421502 @default.
- W3049111908 cites W2193980439 @default.
- W3049111908 cites W2257585528 @default.
- W3049111908 cites W2462332352 @default.
- W3049111908 cites W2471572456 @default.
- W3049111908 cites W2591436041 @default.
- W3049111908 cites W2596128158 @default.
- W3049111908 cites W2748748027 @default.
- W3049111908 cites W2767893258 @default.
- W3049111908 cites W2790418573 @default.
- W3049111908 cites W2791835197 @default.
- W3049111908 cites W2794477352 @default.
- W3049111908 cites W2896606301 @default.
- W3049111908 cites W2899376337 @default.
- W3049111908 cites W2912068577 @default.
- W3049111908 cites W3014148493 @default.
- W3049111908 cites W3026665274 @default.
- W3049111908 doi "https://doi.org/10.1016/j.habitatint.2020.102227" @default.
- W3049111908 hasPublicationYear "2020" @default.
- W3049111908 type Work @default.
- W3049111908 sameAs 3049111908 @default.
- W3049111908 citedByCount "37" @default.
- W3049111908 countsByYear W30491119082021 @default.
- W3049111908 countsByYear W30491119082022 @default.
- W3049111908 countsByYear W30491119082023 @default.
- W3049111908 crossrefType "journal-article" @default.
- W3049111908 hasAuthorship W3049111908A5021653380 @default.
- W3049111908 hasAuthorship W3049111908A5030157748 @default.
- W3049111908 hasAuthorship W3049111908A5041758527 @default.
- W3049111908 hasConcept C116834253 @default.
- W3049111908 hasConcept C120665830 @default.
- W3049111908 hasConcept C121332964 @default.
- W3049111908 hasConcept C127040729 @default.
- W3049111908 hasConcept C129047720 @default.
- W3049111908 hasConcept C142724271 @default.
- W3049111908 hasConcept C154611951 @default.
- W3049111908 hasConcept C158049464 @default.
- W3049111908 hasConcept C161421721 @default.
- W3049111908 hasConcept C162324750 @default.
- W3049111908 hasConcept C166957645 @default.
- W3049111908 hasConcept C18903297 @default.
- W3049111908 hasConcept C191935318 @default.
- W3049111908 hasConcept C205649164 @default.
- W3049111908 hasConcept C26271046 @default.
- W3049111908 hasConcept C2778304055 @default.
- W3049111908 hasConcept C2778368647 @default.
- W3049111908 hasConcept C39432304 @default.
- W3049111908 hasConcept C39853841 @default.
- W3049111908 hasConcept C50522688 @default.
- W3049111908 hasConcept C71924100 @default.
- W3049111908 hasConcept C86803240 @default.
- W3049111908 hasConceptScore W3049111908C116834253 @default.
- W3049111908 hasConceptScore W3049111908C120665830 @default.
- W3049111908 hasConceptScore W3049111908C121332964 @default.
- W3049111908 hasConceptScore W3049111908C127040729 @default.
- W3049111908 hasConceptScore W3049111908C129047720 @default.
- W3049111908 hasConceptScore W3049111908C142724271 @default.
- W3049111908 hasConceptScore W3049111908C154611951 @default.
- W3049111908 hasConceptScore W3049111908C158049464 @default.
- W3049111908 hasConceptScore W3049111908C161421721 @default.
- W3049111908 hasConceptScore W3049111908C162324750 @default.
- W3049111908 hasConceptScore W3049111908C166957645 @default.
- W3049111908 hasConceptScore W3049111908C18903297 @default.
- W3049111908 hasConceptScore W3049111908C191935318 @default.
- W3049111908 hasConceptScore W3049111908C205649164 @default.
- W3049111908 hasConceptScore W3049111908C26271046 @default.
- W3049111908 hasConceptScore W3049111908C2778304055 @default.
- W3049111908 hasConceptScore W3049111908C2778368647 @default.
- W3049111908 hasConceptScore W3049111908C39432304 @default.
- W3049111908 hasConceptScore W3049111908C39853841 @default.
- W3049111908 hasConceptScore W3049111908C50522688 @default.