Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049118933> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3049118933 endingPage "106044" @default.
- W3049118933 startingPage "106044" @default.
- W3049118933 abstract "Outdoor ultrafine particles (UFPs) (<0.1 µm) may have an important impact on public health but exposure assessment remains a challenge in epidemiological studies. We developed a novel method of estimating spatiotemporal variations in outdoor UFP number concentrations and particle diameters using street-level images and audio data in Montreal, Canada. As a secondary aim, we also developed models for noise. Convolutional neural networks were first trained to predict 10-second average UFP/noise parameters using a large database of images and audio spectrogram data paired with measurements collected between April 2019 and February 2020. Final multivariable linear regression and generalized additive models were developed to predict 5-minute average UFP/noise parameters including covariates from deep learning models based on image and audio data along with outdoor temperature and wind speed. The best performing final models had mean cross-validation R2 values of 0.677 and 0.523 for UFP number concentrations and 0.825 and 0.735 for UFP size using two different test sets. Audio predictions from deep learning models were stronger predictors of spatiotemporal variations in UFP parameters than predictions based on street-level images; this was not explained only by noise levels captured in the audio signal. All final noise models had R2 values above 0.90. Collectively, our findings suggest that street-level images and audio data can be used to estimate spatiotemporal variations in outdoor UFPs and noise. This approach may be useful in developing exposure models over broad spatial scales and such models can be regularly updated to expand generalizability as more measurements become available." @default.
- W3049118933 created "2020-08-21" @default.
- W3049118933 creator A5008533466 @default.
- W3049118933 creator A5009705170 @default.
- W3049118933 creator A5073681257 @default.
- W3049118933 date "2020-11-01" @default.
- W3049118933 modified "2023-10-16" @default.
- W3049118933 title "Predicting outdoor ultrafine particle number concentrations, particle size, and noise using street-level images and audio data" @default.
- W3049118933 cites W2043850799 @default.
- W3049118933 cites W2174484031 @default.
- W3049118933 cites W2194775991 @default.
- W3049118933 cites W2209427089 @default.
- W3049118933 cites W2761276707 @default.
- W3049118933 cites W2765726697 @default.
- W3049118933 cites W2791280249 @default.
- W3049118933 cites W2889228028 @default.
- W3049118933 cites W2898149752 @default.
- W3049118933 cites W2901460997 @default.
- W3049118933 cites W2906461844 @default.
- W3049118933 cites W2917538622 @default.
- W3049118933 cites W2939078500 @default.
- W3049118933 cites W2940807868 @default.
- W3049118933 cites W2947620908 @default.
- W3049118933 cites W2962858109 @default.
- W3049118933 cites W2972089754 @default.
- W3049118933 cites W2987863330 @default.
- W3049118933 doi "https://doi.org/10.1016/j.envint.2020.106044" @default.
- W3049118933 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32805577" @default.
- W3049118933 hasPublicationYear "2020" @default.
- W3049118933 type Work @default.
- W3049118933 sameAs 3049118933 @default.
- W3049118933 citedByCount "10" @default.
- W3049118933 countsByYear W30491189332021 @default.
- W3049118933 countsByYear W30491189332022 @default.
- W3049118933 countsByYear W30491189332023 @default.
- W3049118933 crossrefType "journal-article" @default.
- W3049118933 hasAuthorship W3049118933A5008533466 @default.
- W3049118933 hasAuthorship W3049118933A5009705170 @default.
- W3049118933 hasAuthorship W3049118933A5073681257 @default.
- W3049118933 hasBestOaLocation W30491189331 @default.
- W3049118933 hasConcept C105795698 @default.
- W3049118933 hasConcept C115961682 @default.
- W3049118933 hasConcept C121332964 @default.
- W3049118933 hasConcept C127413603 @default.
- W3049118933 hasConcept C150032891 @default.
- W3049118933 hasConcept C154945302 @default.
- W3049118933 hasConcept C198408306 @default.
- W3049118933 hasConcept C203718221 @default.
- W3049118933 hasConcept C205312793 @default.
- W3049118933 hasConcept C24890656 @default.
- W3049118933 hasConcept C33923547 @default.
- W3049118933 hasConcept C39432304 @default.
- W3049118933 hasConcept C41008148 @default.
- W3049118933 hasConcept C42360764 @default.
- W3049118933 hasConcept C81363708 @default.
- W3049118933 hasConcept C99498987 @default.
- W3049118933 hasConceptScore W3049118933C105795698 @default.
- W3049118933 hasConceptScore W3049118933C115961682 @default.
- W3049118933 hasConceptScore W3049118933C121332964 @default.
- W3049118933 hasConceptScore W3049118933C127413603 @default.
- W3049118933 hasConceptScore W3049118933C150032891 @default.
- W3049118933 hasConceptScore W3049118933C154945302 @default.
- W3049118933 hasConceptScore W3049118933C198408306 @default.
- W3049118933 hasConceptScore W3049118933C203718221 @default.
- W3049118933 hasConceptScore W3049118933C205312793 @default.
- W3049118933 hasConceptScore W3049118933C24890656 @default.
- W3049118933 hasConceptScore W3049118933C33923547 @default.
- W3049118933 hasConceptScore W3049118933C39432304 @default.
- W3049118933 hasConceptScore W3049118933C41008148 @default.
- W3049118933 hasConceptScore W3049118933C42360764 @default.
- W3049118933 hasConceptScore W3049118933C81363708 @default.
- W3049118933 hasConceptScore W3049118933C99498987 @default.
- W3049118933 hasFunder F4320309327 @default.
- W3049118933 hasFunder F4320334593 @default.
- W3049118933 hasLocation W30491189331 @default.
- W3049118933 hasOpenAccess W3049118933 @default.
- W3049118933 hasPrimaryLocation W30491189331 @default.
- W3049118933 hasRelatedWork W1489018618 @default.
- W3049118933 hasRelatedWork W166321423 @default.
- W3049118933 hasRelatedWork W1988699101 @default.
- W3049118933 hasRelatedWork W1994247068 @default.
- W3049118933 hasRelatedWork W2116114172 @default.
- W3049118933 hasRelatedWork W2409792685 @default.
- W3049118933 hasRelatedWork W2909324942 @default.
- W3049118933 hasRelatedWork W2966407218 @default.
- W3049118933 hasRelatedWork W3131724554 @default.
- W3049118933 hasRelatedWork W216737315 @default.
- W3049118933 hasVolume "144" @default.
- W3049118933 isParatext "false" @default.
- W3049118933 isRetracted "false" @default.
- W3049118933 magId "3049118933" @default.
- W3049118933 workType "article" @default.