Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049121704> ?p ?o ?g. }
- W3049121704 endingPage "41" @default.
- W3049121704 startingPage "1" @default.
- W3049121704 abstract "Abstract In recent years, a lot of research interest has been generated for the research and development of terahertz (THz) components, sources, and detectors because of their various applications in astronomy, spectroscopy, bioimaging, biosensing, quality inspection in industrial products, and medical and pharmaceutical research areas. The potentiality of impact avalanche transit time (IMPATT) devices made of different semiconductors particularly the wide bandgap (WBG) semiconductors has been presented in this chapter for operation at THz frequency band. The suitability of IMPATTs based on both normal bandgap (Si, GaAs, InP) and WBG semiconductors (Wz-GaN, 4H-SiC, type IIb diamond) as potential THz sources has been studied by avalanche response time analysis. The design, modelling, and simulation of double-drift region (DDR) IMPATTs based on various semiconductors for operation of these devices at millimetre wave window frequencies (94, 140, 220 GHz) and THz frequency frequencies (0.5, 1.0, 1.5 THz) have also been presented in this chapter. The avalanche resonance limited frequencies of DDR IMPATTs based on GaN, diamond, and Si IMPATTs are found to be 1.00, 1.50, and 0.50 THz, respectively. DDR diamond IMPATTs can be used as potential THz sources to deliver sufficient power at 1.5 THz and above. The simulation provides the avalanche resonance limited frequencies of DDR IMPATTs, which is highest for Wz-GaN in THz band. IMPATT devices based on Wz-GaN are found to be without any competition above 1 THz as regard to delivering high power with high conversion efficiency. A quantum drift-diffusion model based on density gradient theory has been presented for accurate large-signal simulation of DDR IMPATT devices based on conventional and WBG semiconductors operating at higher mm-wave and lower THz frequencies. It is observed that the mm-wave and THz performance of DDR IMPATTs based on Wz-GaN, InP, C, 4H-SiC, and Si are affected by quantum phenomena such as quantum confinement, quantum tunneling, etc., arising at certain limiting frequency. The quantum effect on the large-signal properties of IMPATTs will be appreciable if the dimension of the active layer of the device is of the order of de Broglie wavelength of electrons or holes at the design frequencies in mm-wave and THz bands. However, more accurate prediction of large signal power and conversion efficiency of the device can be made due to incorporation of quantum corrections in the drift-diffusion model. In conclusion, the great potential of Wz-GaN and type IIb diamond as base materials of DDR IMPATTs can be explored to experimentally realize these devices for THz operation" @default.
- W3049121704 created "2020-08-21" @default.
- W3049121704 creator A5038295943 @default.
- W3049121704 date "2020-01-01" @default.
- W3049121704 modified "2023-09-26" @default.
- W3049121704 title "THz Solid-State Source Based on IMPATT Devices" @default.
- W3049121704 cites W1641070762 @default.
- W3049121704 cites W1963951320 @default.
- W3049121704 cites W1966968872 @default.
- W3049121704 cites W1967163627 @default.
- W3049121704 cites W1968991107 @default.
- W3049121704 cites W1969697566 @default.
- W3049121704 cites W1971256686 @default.
- W3049121704 cites W1971502883 @default.
- W3049121704 cites W1974028205 @default.
- W3049121704 cites W1977365474 @default.
- W3049121704 cites W1978084689 @default.
- W3049121704 cites W1979167132 @default.
- W3049121704 cites W1980848378 @default.
- W3049121704 cites W1982683406 @default.
- W3049121704 cites W1983878390 @default.
- W3049121704 cites W1990962148 @default.
- W3049121704 cites W1991763152 @default.
- W3049121704 cites W1993740621 @default.
- W3049121704 cites W1995234094 @default.
- W3049121704 cites W1995388915 @default.
- W3049121704 cites W1996689652 @default.
- W3049121704 cites W1996697728 @default.
- W3049121704 cites W1999177604 @default.
- W3049121704 cites W1999355351 @default.
- W3049121704 cites W1999862436 @default.
- W3049121704 cites W2005280148 @default.
- W3049121704 cites W2006836221 @default.
- W3049121704 cites W2007379745 @default.
- W3049121704 cites W2010439386 @default.
- W3049121704 cites W2015105382 @default.
- W3049121704 cites W2025724045 @default.
- W3049121704 cites W2026536771 @default.
- W3049121704 cites W2027645671 @default.
- W3049121704 cites W2028069758 @default.
- W3049121704 cites W2028903068 @default.
- W3049121704 cites W2032656399 @default.
- W3049121704 cites W2033328622 @default.
- W3049121704 cites W2034879551 @default.
- W3049121704 cites W2035544901 @default.
- W3049121704 cites W2038987855 @default.
- W3049121704 cites W2041161486 @default.
- W3049121704 cites W2049429467 @default.
- W3049121704 cites W2049963212 @default.
- W3049121704 cites W2051488110 @default.
- W3049121704 cites W2051868162 @default.
- W3049121704 cites W2056670423 @default.
- W3049121704 cites W2061645740 @default.
- W3049121704 cites W2062509156 @default.
- W3049121704 cites W2065725998 @default.
- W3049121704 cites W2066644507 @default.
- W3049121704 cites W2070441341 @default.
- W3049121704 cites W2071693406 @default.
- W3049121704 cites W2076581512 @default.
- W3049121704 cites W2078694262 @default.
- W3049121704 cites W2079493516 @default.
- W3049121704 cites W2079503528 @default.
- W3049121704 cites W2079910741 @default.
- W3049121704 cites W2081023835 @default.
- W3049121704 cites W2081870411 @default.
- W3049121704 cites W2082289019 @default.
- W3049121704 cites W2084343921 @default.
- W3049121704 cites W2085729447 @default.
- W3049121704 cites W2086354741 @default.
- W3049121704 cites W2087668959 @default.
- W3049121704 cites W2088853423 @default.
- W3049121704 cites W2089391701 @default.
- W3049121704 cites W2089612233 @default.
- W3049121704 cites W2091273031 @default.
- W3049121704 cites W2097631670 @default.
- W3049121704 cites W2097679641 @default.
- W3049121704 cites W2103269500 @default.
- W3049121704 cites W2105838914 @default.
- W3049121704 cites W2117606922 @default.
- W3049121704 cites W2117754928 @default.
- W3049121704 cites W2119037923 @default.
- W3049121704 cites W2119210918 @default.
- W3049121704 cites W2122531343 @default.
- W3049121704 cites W2122924251 @default.
- W3049121704 cites W2132738494 @default.
- W3049121704 cites W2136148206 @default.
- W3049121704 cites W2140646852 @default.
- W3049121704 cites W2141771855 @default.
- W3049121704 cites W2144621060 @default.
- W3049121704 cites W2150066843 @default.
- W3049121704 cites W2153949613 @default.
- W3049121704 cites W2158211567 @default.
- W3049121704 cites W2164768716 @default.
- W3049121704 cites W2171898910 @default.
- W3049121704 cites W2341392382 @default.
- W3049121704 cites W4247906886 @default.
- W3049121704 doi "https://doi.org/10.1016/b978-0-12-818556-8.00001-x" @default.
- W3049121704 hasPublicationYear "2020" @default.