Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049186827> ?p ?o ?g. }
- W3049186827 abstract "Machine learning force field (ML-FF) has emerged as a potential promising approach to simulate various material phenomena for large systems with ab initio accuracy. However, most ML-FFs have been used to study the phenomena relatively close to the equilibrium ground states. In this work, we have studied a far from equilibrium system of liquid to crystal Si growth using ML-FF. We found that our ML-FF based on ab initio decomposed atomic energy can reproduce all the aspects of ab initio simulated growth, from local energy fluctuations to transition temperatures, to diffusion constant, and growth rates. We have also compared the growth simulation with the Stillinger-Weber classical force field and found significant differences. A procedure is also provided to correct a systematic fitting bias in the ML-FF training process, which exists in all training models, otherwise critical results like transition temperature will be wrong." @default.
- W3049186827 created "2020-08-21" @default.
- W3049186827 creator A5041867414 @default.
- W3049186827 creator A5091144208 @default.
- W3049186827 date "2020-08-17" @default.
- W3049186827 modified "2023-10-13" @default.
- W3049186827 title "Liquid to crystal Si growth simulation using machine learning force field" @default.
- W3049186827 cites W1537320059 @default.
- W3049186827 cites W1695703141 @default.
- W3049186827 cites W1975997599 @default.
- W3049186827 cites W1986235469 @default.
- W3049186827 cites W1986912357 @default.
- W3049186827 cites W2000348311 @default.
- W3049186827 cites W2000957843 @default.
- W3049186827 cites W2025444507 @default.
- W3049186827 cites W2026907619 @default.
- W3049186827 cites W2031594181 @default.
- W3049186827 cites W2037782625 @default.
- W3049186827 cites W2040182267 @default.
- W3049186827 cites W2043916327 @default.
- W3049186827 cites W2047968138 @default.
- W3049186827 cites W2052637367 @default.
- W3049186827 cites W2055526416 @default.
- W3049186827 cites W2083956694 @default.
- W3049186827 cites W2153882824 @default.
- W3049186827 cites W2172266624 @default.
- W3049186827 cites W2197007850 @default.
- W3049186827 cites W2200589053 @default.
- W3049186827 cites W2327438196 @default.
- W3049186827 cites W2334119975 @default.
- W3049186827 cites W2470768373 @default.
- W3049186827 cites W26088913 @default.
- W3049186827 cites W2734920787 @default.
- W3049186827 cites W2772764871 @default.
- W3049186827 cites W2792137452 @default.
- W3049186827 cites W2800301423 @default.
- W3049186827 cites W2886870077 @default.
- W3049186827 cites W2889002363 @default.
- W3049186827 cites W2894355378 @default.
- W3049186827 cites W2911490414 @default.
- W3049186827 cites W2922019493 @default.
- W3049186827 cites W2922733622 @default.
- W3049186827 cites W2943626891 @default.
- W3049186827 cites W2945309682 @default.
- W3049186827 cites W2963339823 @default.
- W3049186827 cites W3012140320 @default.
- W3049186827 cites W3098509317 @default.
- W3049186827 doi "https://doi.org/10.1063/5.0011163" @default.
- W3049186827 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32828094" @default.
- W3049186827 hasPublicationYear "2020" @default.
- W3049186827 type Work @default.
- W3049186827 sameAs 3049186827 @default.
- W3049186827 citedByCount "4" @default.
- W3049186827 countsByYear W30491868272021 @default.
- W3049186827 countsByYear W30491868272022 @default.
- W3049186827 countsByYear W30491868272023 @default.
- W3049186827 crossrefType "journal-article" @default.
- W3049186827 hasAuthorship W3049186827A5041867414 @default.
- W3049186827 hasAuthorship W3049186827A5091144208 @default.
- W3049186827 hasBestOaLocation W30491868271 @default.
- W3049186827 hasConcept C10803110 @default.
- W3049186827 hasConcept C121332964 @default.
- W3049186827 hasConcept C121864883 @default.
- W3049186827 hasConcept C178790620 @default.
- W3049186827 hasConcept C183971685 @default.
- W3049186827 hasConcept C185592680 @default.
- W3049186827 hasConcept C18762648 @default.
- W3049186827 hasConcept C192562407 @default.
- W3049186827 hasConcept C199360897 @default.
- W3049186827 hasConcept C202444582 @default.
- W3049186827 hasConcept C26456737 @default.
- W3049186827 hasConcept C26873012 @default.
- W3049186827 hasConcept C2781285689 @default.
- W3049186827 hasConcept C2781442258 @default.
- W3049186827 hasConcept C32909587 @default.
- W3049186827 hasConcept C33923547 @default.
- W3049186827 hasConcept C41008148 @default.
- W3049186827 hasConcept C62520636 @default.
- W3049186827 hasConcept C69357855 @default.
- W3049186827 hasConcept C9652623 @default.
- W3049186827 hasConcept C97355855 @default.
- W3049186827 hasConceptScore W3049186827C10803110 @default.
- W3049186827 hasConceptScore W3049186827C121332964 @default.
- W3049186827 hasConceptScore W3049186827C121864883 @default.
- W3049186827 hasConceptScore W3049186827C178790620 @default.
- W3049186827 hasConceptScore W3049186827C183971685 @default.
- W3049186827 hasConceptScore W3049186827C185592680 @default.
- W3049186827 hasConceptScore W3049186827C18762648 @default.
- W3049186827 hasConceptScore W3049186827C192562407 @default.
- W3049186827 hasConceptScore W3049186827C199360897 @default.
- W3049186827 hasConceptScore W3049186827C202444582 @default.
- W3049186827 hasConceptScore W3049186827C26456737 @default.
- W3049186827 hasConceptScore W3049186827C26873012 @default.
- W3049186827 hasConceptScore W3049186827C2781285689 @default.
- W3049186827 hasConceptScore W3049186827C2781442258 @default.
- W3049186827 hasConceptScore W3049186827C32909587 @default.
- W3049186827 hasConceptScore W3049186827C33923547 @default.
- W3049186827 hasConceptScore W3049186827C41008148 @default.
- W3049186827 hasConceptScore W3049186827C62520636 @default.
- W3049186827 hasConceptScore W3049186827C69357855 @default.