Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049204557> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3049204557 endingPage "4583" @default.
- W3049204557 startingPage "4583" @default.
- W3049204557 abstract "Currently, expert systems and applied machine learning algorithms are widely used to automate network intrusion detection. In critical infrastructure applications of communication technologies, the interaction among various industrial control systems and the Internet environment intrinsic to the IoT technology makes them susceptible to cyber-attacks. Given the existence of the enormous network traffic in critical Cyber-Physical Systems (CPSs), traditional methods of machine learning implemented in network anomaly detection are inefficient. Therefore, recently developed machine learning techniques, with the emphasis on deep learning, are finding their successful implementations in the detection and classification of anomalies at both the network and host levels. This paper presents an ensemble method that leverages deep models such as the Deep Neural Network (DNN) and Long Short-Term Memory (LSTM) and a meta-classifier (i.e., logistic regression) following the principle of stacked generalization. To enhance the capabilities of the proposed approach, the method utilizes a two-step process for the apprehension of network anomalies. In the first stage, data pre-processing, a Deep Sparse AutoEncoder (DSAE) is employed for the feature engineering problem. In the second phase, a stacking ensemble learning approach is utilized for classification. The efficiency of the method disclosed in this work is tested on heterogeneous datasets, including data gathered in the IoT environment, namely IoT-23, LITNET-2020, and NetML-2020. The results of the evaluation of the proposed approach are discussed. Statistical significance is tested and compared to the state-of-the-art approaches in network anomaly detection." @default.
- W3049204557 created "2020-08-21" @default.
- W3049204557 creator A5009283476 @default.
- W3049204557 creator A5029157597 @default.
- W3049204557 creator A5042632349 @default.
- W3049204557 creator A5088536972 @default.
- W3049204557 date "2020-08-15" @default.
- W3049204557 modified "2023-10-13" @default.
- W3049204557 title "A Deep Learning Ensemble for Network Anomaly and Cyber-Attack Detection" @default.
- W3049204557 cites W1488044888 @default.
- W3049204557 cites W1572404648 @default.
- W3049204557 cites W2016258134 @default.
- W3049204557 cites W2058614926 @default.
- W3049204557 cites W2061082730 @default.
- W3049204557 cites W2104167780 @default.
- W3049204557 cites W2135293965 @default.
- W3049204557 cites W2148143831 @default.
- W3049204557 cites W2248620004 @default.
- W3049204557 cites W2334853001 @default.
- W3049204557 cites W2580840020 @default.
- W3049204557 cites W28412257 @default.
- W3049204557 cites W2884551085 @default.
- W3049204557 cites W2959716986 @default.
- W3049204557 cites W3006354545 @default.
- W3049204557 cites W3017217726 @default.
- W3049204557 cites W3024012711 @default.
- W3049204557 cites W4241727697 @default.
- W3049204557 doi "https://doi.org/10.3390/s20164583" @default.
- W3049204557 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7472141" @default.
- W3049204557 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32824187" @default.
- W3049204557 hasPublicationYear "2020" @default.
- W3049204557 type Work @default.
- W3049204557 sameAs 3049204557 @default.
- W3049204557 citedByCount "54" @default.
- W3049204557 countsByYear W30492045572020 @default.
- W3049204557 countsByYear W30492045572021 @default.
- W3049204557 countsByYear W30492045572022 @default.
- W3049204557 countsByYear W30492045572023 @default.
- W3049204557 crossrefType "journal-article" @default.
- W3049204557 hasAuthorship W3049204557A5009283476 @default.
- W3049204557 hasAuthorship W3049204557A5029157597 @default.
- W3049204557 hasAuthorship W3049204557A5042632349 @default.
- W3049204557 hasAuthorship W3049204557A5088536972 @default.
- W3049204557 hasBestOaLocation W30492045571 @default.
- W3049204557 hasConcept C101738243 @default.
- W3049204557 hasConcept C108583219 @default.
- W3049204557 hasConcept C119857082 @default.
- W3049204557 hasConcept C124101348 @default.
- W3049204557 hasConcept C154945302 @default.
- W3049204557 hasConcept C35525427 @default.
- W3049204557 hasConcept C41008148 @default.
- W3049204557 hasConcept C45942800 @default.
- W3049204557 hasConcept C50644808 @default.
- W3049204557 hasConcept C739882 @default.
- W3049204557 hasConcept C97385483 @default.
- W3049204557 hasConceptScore W3049204557C101738243 @default.
- W3049204557 hasConceptScore W3049204557C108583219 @default.
- W3049204557 hasConceptScore W3049204557C119857082 @default.
- W3049204557 hasConceptScore W3049204557C124101348 @default.
- W3049204557 hasConceptScore W3049204557C154945302 @default.
- W3049204557 hasConceptScore W3049204557C35525427 @default.
- W3049204557 hasConceptScore W3049204557C41008148 @default.
- W3049204557 hasConceptScore W3049204557C45942800 @default.
- W3049204557 hasConceptScore W3049204557C50644808 @default.
- W3049204557 hasConceptScore W3049204557C739882 @default.
- W3049204557 hasConceptScore W3049204557C97385483 @default.
- W3049204557 hasIssue "16" @default.
- W3049204557 hasLocation W30492045571 @default.
- W3049204557 hasLocation W30492045572 @default.
- W3049204557 hasLocation W30492045573 @default.
- W3049204557 hasOpenAccess W3049204557 @default.
- W3049204557 hasPrimaryLocation W30492045571 @default.
- W3049204557 hasRelatedWork W2159052453 @default.
- W3049204557 hasRelatedWork W2918377632 @default.
- W3049204557 hasRelatedWork W3013699712 @default.
- W3049204557 hasRelatedWork W3017266184 @default.
- W3049204557 hasRelatedWork W3046391934 @default.
- W3049204557 hasRelatedWork W3186512740 @default.
- W3049204557 hasRelatedWork W3194885736 @default.
- W3049204557 hasRelatedWork W3202913553 @default.
- W3049204557 hasRelatedWork W4363671829 @default.
- W3049204557 hasRelatedWork W4367312605 @default.
- W3049204557 hasVolume "20" @default.
- W3049204557 isParatext "false" @default.
- W3049204557 isRetracted "false" @default.
- W3049204557 magId "3049204557" @default.
- W3049204557 workType "article" @default.