Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049205932> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3049205932 abstract "Spatially aggregated epidemiological data is nowadays increasingly common because of ethical concern of data use as well as preservation of patient confidentiality. They are typically presented either as the count of disease cases or as an average measurement from districts partitioning a study region. In most cases, the partitioning is based on administrative convenience rather than information about the aetiology of any disease or public health problem. While inference for spatially aggregated data commonly make use of model that assumes a spatially discrete variation, we argue that a spatially continuous model should be considered when there is a scientific justification for its use, especially when the underlying generating process of the disease outcome is hypothesised to behave in a spatially continuous manner. In this thesis, we consider geostatistical methods as a framework that can be used to analyse spatially aggregated data. This thesis is a series of papers, two methodological and one public health application. In the first methodological paper, we developed a computationally efficient discrete approximation to log-Gaussian Cox process (LGCP) models for the analysis of spatially aggregated disease count data. We compare the predictive performance of our modelling approach with LGCP through a simulation study and an application to primary biliary cirrhosis incidence data in Newcastle-Upon-Tyne, UK. Our results suggest that when disease risk is assumed to be a spatially continuous process, the proposed approximation to LGCP provides reliable estimates of disease risk both on spatially continuous and aggregated scales. In the second methodological paper, We developed a model-based geostatistical approach that allows us to model the relationship between the Life expectancy at birth (LEB) and the index of multiple deprivation (IMD), when these are available over different partitions of the study region. We found that the effect of IMD on LEB is higher for males than for females. We show that our proposed model-based geostatistical approach does not only provide solution to any form of misalignment problem but also allows for spatially continuous inferences. In the third application paper, we developed a spatio-temporal model for monthly Chronic Obstructive Pulmonary Disease (COPD) emergency admissions data in South Cumbria and North Lancashire, UK, 2012-2018. We assess the relative contribution of socio-economic and environmental variables for forecasting COPD emergency admissions. In addition, we develop an early warning system that triggers an alarm whenever COPD emergency admissions exceeds a predefined incidence thresholds. The result of our analysis can potentially help NHS Morecambe Bay Clinical Commissioning Group stakeholders to define areas to target early intervention as well as inform resource allocation for healthcare system so that its limited resources can be used to maximum effect." @default.
- W3049205932 created "2020-08-21" @default.
- W3049205932 creator A5080471700 @default.
- W3049205932 date "2020-01-16" @default.
- W3049205932 modified "2023-09-28" @default.
- W3049205932 title "Geostatistical methods for modelling spatially aggregated data" @default.
- W3049205932 doi "https://doi.org/10.17635/lancaster/thesis/839" @default.
- W3049205932 hasPublicationYear "2020" @default.
- W3049205932 type Work @default.
- W3049205932 sameAs 3049205932 @default.
- W3049205932 citedByCount "0" @default.
- W3049205932 crossrefType "dissertation" @default.
- W3049205932 hasAuthorship W3049205932A5080471700 @default.
- W3049205932 hasConcept C105795698 @default.
- W3049205932 hasConcept C111919701 @default.
- W3049205932 hasConcept C124101348 @default.
- W3049205932 hasConcept C125572338 @default.
- W3049205932 hasConcept C149782125 @default.
- W3049205932 hasConcept C154945302 @default.
- W3049205932 hasConcept C2522767166 @default.
- W3049205932 hasConcept C2776214188 @default.
- W3049205932 hasConcept C33923547 @default.
- W3049205932 hasConcept C41008148 @default.
- W3049205932 hasConcept C94747663 @default.
- W3049205932 hasConcept C98045186 @default.
- W3049205932 hasConceptScore W3049205932C105795698 @default.
- W3049205932 hasConceptScore W3049205932C111919701 @default.
- W3049205932 hasConceptScore W3049205932C124101348 @default.
- W3049205932 hasConceptScore W3049205932C125572338 @default.
- W3049205932 hasConceptScore W3049205932C149782125 @default.
- W3049205932 hasConceptScore W3049205932C154945302 @default.
- W3049205932 hasConceptScore W3049205932C2522767166 @default.
- W3049205932 hasConceptScore W3049205932C2776214188 @default.
- W3049205932 hasConceptScore W3049205932C33923547 @default.
- W3049205932 hasConceptScore W3049205932C41008148 @default.
- W3049205932 hasConceptScore W3049205932C94747663 @default.
- W3049205932 hasConceptScore W3049205932C98045186 @default.
- W3049205932 hasLocation W30492059321 @default.
- W3049205932 hasOpenAccess W3049205932 @default.
- W3049205932 hasPrimaryLocation W30492059321 @default.
- W3049205932 hasRelatedWork W1977140032 @default.
- W3049205932 hasRelatedWork W2091720173 @default.
- W3049205932 hasRelatedWork W2155668048 @default.
- W3049205932 hasRelatedWork W2288639844 @default.
- W3049205932 hasRelatedWork W2410888613 @default.
- W3049205932 hasRelatedWork W2417389448 @default.
- W3049205932 hasRelatedWork W2517620088 @default.
- W3049205932 hasRelatedWork W2598184890 @default.
- W3049205932 hasRelatedWork W2889909547 @default.
- W3049205932 hasRelatedWork W2949859141 @default.
- W3049205932 hasRelatedWork W2951530642 @default.
- W3049205932 hasRelatedWork W2951815804 @default.
- W3049205932 hasRelatedWork W2980540663 @default.
- W3049205932 hasRelatedWork W2989802455 @default.
- W3049205932 hasRelatedWork W3036250074 @default.
- W3049205932 hasRelatedWork W3085846971 @default.
- W3049205932 hasRelatedWork W3160578347 @default.
- W3049205932 hasRelatedWork W3174483719 @default.
- W3049205932 hasRelatedWork W3178102275 @default.
- W3049205932 hasRelatedWork W86442420 @default.
- W3049205932 isParatext "false" @default.
- W3049205932 isRetracted "false" @default.
- W3049205932 magId "3049205932" @default.
- W3049205932 workType "dissertation" @default.