Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049206681> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3049206681 abstract "Heating plants are usually based on heating specifications, local climatic conditions, building structure types, actual conditions of central heating systems, meteorological data and heating operation experience in the past years. The central heating system is a complex multi-variable nonlinear strong coupling system. So far, there is no precise model to get each parameter. The empirical parameters have proven to be effective and reliable in practice, but they are not necessarily optimal and comprehensive, and they cannot be directly used by computer control systems. In recent years, many new algorithms for fitting nonlinear systems have emerged, among which artificial neural network algorithm is one of the most successful algorithms. One of the essences of neural network algorithms is machine learning—the network is trained through continuous and extensive use of historical observation data and even empirical data to make the model optimally approximate the real model. Therefore, this paper analyzes the principles and objectives of heat exchange station regulation, clarifies the control parameters, and focuses on the control model based on neural network to identify the heat output of the heat exchange station and the outdoor atmospheric temperature changes. The advantages and disadvantages of the BP neural network (BPNN), general regression neural network (GRNN) and radial basis neural network (RBF) models were compared. Finally, the correctness of the model was verified with the actual meteorological data and heating data of Karamay in province Xinjiang using Matlab." @default.
- W3049206681 created "2020-08-21" @default.
- W3049206681 creator A5005780325 @default.
- W3049206681 creator A5039235149 @default.
- W3049206681 creator A5051763358 @default.
- W3049206681 date "2020-08-01" @default.
- W3049206681 modified "2023-09-25" @default.
- W3049206681 title "Research on Energy-saving Regulation Model of Climate Compensation for Central Heating Station Based on Artificial Neural Network" @default.
- W3049206681 cites W2003454866 @default.
- W3049206681 cites W2121625938 @default.
- W3049206681 doi "https://doi.org/10.1109/ccdc49329.2020.9164405" @default.
- W3049206681 hasPublicationYear "2020" @default.
- W3049206681 type Work @default.
- W3049206681 sameAs 3049206681 @default.
- W3049206681 citedByCount "0" @default.
- W3049206681 crossrefType "proceedings-article" @default.
- W3049206681 hasAuthorship W3049206681A5005780325 @default.
- W3049206681 hasAuthorship W3049206681A5039235149 @default.
- W3049206681 hasAuthorship W3049206681A5051763358 @default.
- W3049206681 hasConcept C11171543 @default.
- W3049206681 hasConcept C111919701 @default.
- W3049206681 hasConcept C11413529 @default.
- W3049206681 hasConcept C119857082 @default.
- W3049206681 hasConcept C121332964 @default.
- W3049206681 hasConcept C127413603 @default.
- W3049206681 hasConcept C133199616 @default.
- W3049206681 hasConcept C133731056 @default.
- W3049206681 hasConcept C154945302 @default.
- W3049206681 hasConcept C15744967 @default.
- W3049206681 hasConcept C158622935 @default.
- W3049206681 hasConcept C2780023022 @default.
- W3049206681 hasConcept C2780365114 @default.
- W3049206681 hasConcept C41008148 @default.
- W3049206681 hasConcept C44154836 @default.
- W3049206681 hasConcept C50644808 @default.
- W3049206681 hasConcept C55439883 @default.
- W3049206681 hasConcept C62520636 @default.
- W3049206681 hasConceptScore W3049206681C11171543 @default.
- W3049206681 hasConceptScore W3049206681C111919701 @default.
- W3049206681 hasConceptScore W3049206681C11413529 @default.
- W3049206681 hasConceptScore W3049206681C119857082 @default.
- W3049206681 hasConceptScore W3049206681C121332964 @default.
- W3049206681 hasConceptScore W3049206681C127413603 @default.
- W3049206681 hasConceptScore W3049206681C133199616 @default.
- W3049206681 hasConceptScore W3049206681C133731056 @default.
- W3049206681 hasConceptScore W3049206681C154945302 @default.
- W3049206681 hasConceptScore W3049206681C15744967 @default.
- W3049206681 hasConceptScore W3049206681C158622935 @default.
- W3049206681 hasConceptScore W3049206681C2780023022 @default.
- W3049206681 hasConceptScore W3049206681C2780365114 @default.
- W3049206681 hasConceptScore W3049206681C41008148 @default.
- W3049206681 hasConceptScore W3049206681C44154836 @default.
- W3049206681 hasConceptScore W3049206681C50644808 @default.
- W3049206681 hasConceptScore W3049206681C55439883 @default.
- W3049206681 hasConceptScore W3049206681C62520636 @default.
- W3049206681 hasLocation W30492066811 @default.
- W3049206681 hasOpenAccess W3049206681 @default.
- W3049206681 hasPrimaryLocation W30492066811 @default.
- W3049206681 hasRelatedWork W2060679751 @default.
- W3049206681 hasRelatedWork W2114846855 @default.
- W3049206681 hasRelatedWork W2123442905 @default.
- W3049206681 hasRelatedWork W2322250038 @default.
- W3049206681 hasRelatedWork W2347370566 @default.
- W3049206681 hasRelatedWork W2360509342 @default.
- W3049206681 hasRelatedWork W2367002901 @default.
- W3049206681 hasRelatedWork W2386387936 @default.
- W3049206681 hasRelatedWork W2388799865 @default.
- W3049206681 hasRelatedWork W3204010825 @default.
- W3049206681 isParatext "false" @default.
- W3049206681 isRetracted "false" @default.
- W3049206681 magId "3049206681" @default.
- W3049206681 workType "article" @default.