Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049263492> ?p ?o ?g. }
- W3049263492 endingPage "116494" @default.
- W3049263492 startingPage "116494" @default.
- W3049263492 abstract "Recycling of surface-derived sulfur into the deep earth can impart distinct sulfur isotope signatures to magmas. The details of sulfur transfer from sedimentary rocks to magmas (and ultimately igneous rocks) through metamorphism and devolatilization and/or partial melting, however, is difficult to trace. To understand this process in detail we studied multiple-sulfur isotope compositions of sulfides in the Archean (c. 2685 Ma) Ghost Lake batholith (GLB) and its surrounding host metasedimentary rocks of the Superior Craton (Ontario, Canada) by high spatial resolution secondary ion mass spectrometry, complemented by high-precision gas source isotope ratio mass spectrometry measurements. The GLB comprises strongly peraluminous biotite+cordierite, biotite+muscovite, and muscovite+garnet+tourmaline granites to leucogranites, which are thought to represent the partial melts of surrounding metagreywackes and metapelites. The metasedimentary rocks display a range of metamorphic grades increasing from biotite-chlorite (280-380 °C) at ∼5 km away from the GLB to sillimanite-K-feldspar grade (∼660 °C) immediately adjacent to the batholith, thus providing a natural experiment to understand sulfur isotope variations from low- to high-grade Archean sedimentary rocks, as well as granites representative of their partial melts. We find that metasedimentary sulfide δ34S values increase with progressive metamorphism at most 2-3‰ (from −1‰ up to +1 to +2‰). An increase in δ34S values in pyrrhotite during prograde metamorphism can be explained through Rayleigh fractionation during pyrite desulfidation reactions. Pyrite from all but one of the granite samples preserve δ34S values similar to that of the high-grade metasedimentary rocks, indicating that partial melting did not result in significant fractionation of δ34S. The exception to this is one granite sample from a part of the batholith characterized by abundant metasedimentary inclusions. This sample contains pyrite with heterogeneous and low δ34S values (down to −16‰) which likely resulted from incomplete homogenization of sulfur between the granitic melt and metasedimentary inclusions. Small (several tenths of a permil), mostly positive Δ33S are observed in both the metasedimentary rocks and granites. Our results suggest that Archean strongly peraluminous granites could be a high-fidelity archive to quantify the bulk sulfur isotope composition of the Archean siliciclastic sediments. Further, our findings indicate that subduction of reduced sulfur-bearing sediments in the Archean with δ34S at or near 0‰ should result in release of sulfur-bearing fluids in the mantle wedge with similar values (within a few permil). S-MIF (if initially present in Archean surface material) may be preserved during this process. However, the absence of S-MIF in igneous rocks does not preclude assimilation of Archean sedimentary material as either S-MIF may not be originally present in the Archean sedimentary sulfur and/or homogenization or dilution could obscure any S-MIF originally present in assimilated Archean sediments." @default.
- W3049263492 created "2020-08-21" @default.
- W3049263492 creator A5071234646 @default.
- W3049263492 creator A5079566197 @default.
- W3049263492 creator A5084655134 @default.
- W3049263492 creator A5084745233 @default.
- W3049263492 date "2020-11-01" @default.
- W3049263492 modified "2023-10-14" @default.
- W3049263492 title "Sulfur isotope behavior during metamorphism and anatexis of Archean sedimentary rocks: A case study from the Ghost Lake batholith, Ontario, Canada" @default.
- W3049263492 cites W1930514495 @default.
- W3049263492 cites W1972576751 @default.
- W3049263492 cites W1975089262 @default.
- W3049263492 cites W1978669162 @default.
- W3049263492 cites W1979727721 @default.
- W3049263492 cites W1980067615 @default.
- W3049263492 cites W1986132867 @default.
- W3049263492 cites W1986579555 @default.
- W3049263492 cites W1989688923 @default.
- W3049263492 cites W1990648220 @default.
- W3049263492 cites W1996491338 @default.
- W3049263492 cites W1999586184 @default.
- W3049263492 cites W2004492492 @default.
- W3049263492 cites W2005256176 @default.
- W3049263492 cites W2011753735 @default.
- W3049263492 cites W2011826055 @default.
- W3049263492 cites W2018401739 @default.
- W3049263492 cites W2018877747 @default.
- W3049263492 cites W2021186019 @default.
- W3049263492 cites W2022397453 @default.
- W3049263492 cites W2034611223 @default.
- W3049263492 cites W2041142620 @default.
- W3049263492 cites W2047731910 @default.
- W3049263492 cites W2066481599 @default.
- W3049263492 cites W2066999888 @default.
- W3049263492 cites W2074703934 @default.
- W3049263492 cites W2076038961 @default.
- W3049263492 cites W2076106081 @default.
- W3049263492 cites W2077988090 @default.
- W3049263492 cites W2079798371 @default.
- W3049263492 cites W2089248298 @default.
- W3049263492 cites W2089375343 @default.
- W3049263492 cites W2090553280 @default.
- W3049263492 cites W2091312057 @default.
- W3049263492 cites W2099184944 @default.
- W3049263492 cites W2111043289 @default.
- W3049263492 cites W2115152967 @default.
- W3049263492 cites W2120327863 @default.
- W3049263492 cites W2136617541 @default.
- W3049263492 cites W2147941639 @default.
- W3049263492 cites W2148957284 @default.
- W3049263492 cites W2186908455 @default.
- W3049263492 cites W2520256038 @default.
- W3049263492 cites W2537283160 @default.
- W3049263492 cites W2598775425 @default.
- W3049263492 cites W2620153389 @default.
- W3049263492 cites W2801417879 @default.
- W3049263492 cites W2803759299 @default.
- W3049263492 cites W2884705118 @default.
- W3049263492 cites W2895949795 @default.
- W3049263492 cites W2896680567 @default.
- W3049263492 cites W2902544723 @default.
- W3049263492 cites W2911533054 @default.
- W3049263492 cites W2938243451 @default.
- W3049263492 cites W2940826215 @default.
- W3049263492 cites W2952885076 @default.
- W3049263492 cites W2962968410 @default.
- W3049263492 cites W2971447231 @default.
- W3049263492 cites W2999405227 @default.
- W3049263492 cites W3036418071 @default.
- W3049263492 cites W769154861 @default.
- W3049263492 doi "https://doi.org/10.1016/j.epsl.2020.116494" @default.
- W3049263492 hasPublicationYear "2020" @default.
- W3049263492 type Work @default.
- W3049263492 sameAs 3049263492 @default.
- W3049263492 citedByCount "10" @default.
- W3049263492 countsByYear W30492634922020 @default.
- W3049263492 countsByYear W30492634922021 @default.
- W3049263492 countsByYear W30492634922022 @default.
- W3049263492 countsByYear W30492634922023 @default.
- W3049263492 crossrefType "journal-article" @default.
- W3049263492 hasAuthorship W3049263492A5071234646 @default.
- W3049263492 hasAuthorship W3049263492A5079566197 @default.
- W3049263492 hasAuthorship W3049263492A5084655134 @default.
- W3049263492 hasAuthorship W3049263492A5084745233 @default.
- W3049263492 hasBestOaLocation W30492634921 @default.
- W3049263492 hasConcept C112764850 @default.
- W3049263492 hasConcept C127313418 @default.
- W3049263492 hasConcept C149347711 @default.
- W3049263492 hasConcept C151730666 @default.
- W3049263492 hasConcept C172660882 @default.
- W3049263492 hasConcept C17409809 @default.
- W3049263492 hasConcept C2776062231 @default.
- W3049263492 hasConcept C2776698055 @default.
- W3049263492 hasConcept C2777229588 @default.
- W3049263492 hasConcept C2779604315 @default.
- W3049263492 hasConcept C2779870107 @default.
- W3049263492 hasConcept C6494504 @default.
- W3049263492 hasConcept C77928131 @default.