Matches in SemOpenAlex for { <https://semopenalex.org/work/W3049273567> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3049273567 endingPage "14" @default.
- W3049273567 startingPage "1" @default.
- W3049273567 abstract "The coal mill is one of the important auxiliary engines in the coal-fired power station. Its operation status is directly related to the safe and steady operation of the units. In this paper, a model-based deep learning algorithm for fault diagnosis is proposed to effectively detect the operation state of coal mills. Based on the system mechanism model of coal mills, massive fault data are obtained by analyzing and simulating the different types of faults. Then, stacked autoencoders (SAEs) are established by combining the said data with the deep learning algorithm. The SAE model is trained by the fault data, which provide it with the learning and identification capability of the characteristics of faults. According to the simulation results, the accuracy of fault diagnosis of coal mills based on SAE is high at 98.97%. Finally, the proposed SAEs can well detect the fault in coal mills and generate the warnings in advance." @default.
- W3049273567 created "2020-08-21" @default.
- W3049273567 creator A5005163561 @default.
- W3049273567 creator A5032874982 @default.
- W3049273567 creator A5055661956 @default.
- W3049273567 creator A5060212885 @default.
- W3049273567 creator A5071451609 @default.
- W3049273567 date "2020-08-14" @default.
- W3049273567 modified "2023-10-05" @default.
- W3049273567 title "Application of Model-Based Deep Learning Algorithm in Fault Diagnosis of Coal Mills" @default.
- W3049273567 cites W1482540049 @default.
- W3049273567 cites W1970129395 @default.
- W3049273567 cites W1997918730 @default.
- W3049273567 cites W2000858991 @default.
- W3049273567 cites W2013002270 @default.
- W3049273567 cites W2023551781 @default.
- W3049273567 cites W2071841744 @default.
- W3049273567 cites W2117516628 @default.
- W3049273567 cites W2140449724 @default.
- W3049273567 cites W2152248405 @default.
- W3049273567 cites W2485614840 @default.
- W3049273567 cites W2529827714 @default.
- W3049273567 cites W2606855263 @default.
- W3049273567 cites W2618375042 @default.
- W3049273567 cites W2809349980 @default.
- W3049273567 cites W2811101845 @default.
- W3049273567 cites W2910787596 @default.
- W3049273567 cites W2972585063 @default.
- W3049273567 cites W3100623581 @default.
- W3049273567 cites W817944874 @default.
- W3049273567 doi "https://doi.org/10.1155/2020/3753274" @default.
- W3049273567 hasPublicationYear "2020" @default.
- W3049273567 type Work @default.
- W3049273567 sameAs 3049273567 @default.
- W3049273567 citedByCount "4" @default.
- W3049273567 countsByYear W30492735672023 @default.
- W3049273567 crossrefType "journal-article" @default.
- W3049273567 hasAuthorship W3049273567A5005163561 @default.
- W3049273567 hasAuthorship W3049273567A5032874982 @default.
- W3049273567 hasAuthorship W3049273567A5055661956 @default.
- W3049273567 hasAuthorship W3049273567A5060212885 @default.
- W3049273567 hasAuthorship W3049273567A5071451609 @default.
- W3049273567 hasBestOaLocation W30492735671 @default.
- W3049273567 hasConcept C108583219 @default.
- W3049273567 hasConcept C108615695 @default.
- W3049273567 hasConcept C11413529 @default.
- W3049273567 hasConcept C121332964 @default.
- W3049273567 hasConcept C127313418 @default.
- W3049273567 hasConcept C127413603 @default.
- W3049273567 hasConcept C152745839 @default.
- W3049273567 hasConcept C154945302 @default.
- W3049273567 hasConcept C16057445 @default.
- W3049273567 hasConcept C163258240 @default.
- W3049273567 hasConcept C165205528 @default.
- W3049273567 hasConcept C172707124 @default.
- W3049273567 hasConcept C175551986 @default.
- W3049273567 hasConcept C41008148 @default.
- W3049273567 hasConcept C518851703 @default.
- W3049273567 hasConcept C548081761 @default.
- W3049273567 hasConcept C62520636 @default.
- W3049273567 hasConcept C78519656 @default.
- W3049273567 hasConceptScore W3049273567C108583219 @default.
- W3049273567 hasConceptScore W3049273567C108615695 @default.
- W3049273567 hasConceptScore W3049273567C11413529 @default.
- W3049273567 hasConceptScore W3049273567C121332964 @default.
- W3049273567 hasConceptScore W3049273567C127313418 @default.
- W3049273567 hasConceptScore W3049273567C127413603 @default.
- W3049273567 hasConceptScore W3049273567C152745839 @default.
- W3049273567 hasConceptScore W3049273567C154945302 @default.
- W3049273567 hasConceptScore W3049273567C16057445 @default.
- W3049273567 hasConceptScore W3049273567C163258240 @default.
- W3049273567 hasConceptScore W3049273567C165205528 @default.
- W3049273567 hasConceptScore W3049273567C172707124 @default.
- W3049273567 hasConceptScore W3049273567C175551986 @default.
- W3049273567 hasConceptScore W3049273567C41008148 @default.
- W3049273567 hasConceptScore W3049273567C518851703 @default.
- W3049273567 hasConceptScore W3049273567C548081761 @default.
- W3049273567 hasConceptScore W3049273567C62520636 @default.
- W3049273567 hasConceptScore W3049273567C78519656 @default.
- W3049273567 hasLocation W30492735671 @default.
- W3049273567 hasLocation W30492735672 @default.
- W3049273567 hasOpenAccess W3049273567 @default.
- W3049273567 hasPrimaryLocation W30492735671 @default.
- W3049273567 hasRelatedWork W1235466188 @default.
- W3049273567 hasRelatedWork W2731899572 @default.
- W3049273567 hasRelatedWork W2939353110 @default.
- W3049273567 hasRelatedWork W3009238340 @default.
- W3049273567 hasRelatedWork W3215138031 @default.
- W3049273567 hasRelatedWork W4230611425 @default.
- W3049273567 hasRelatedWork W4312962853 @default.
- W3049273567 hasRelatedWork W4321369474 @default.
- W3049273567 hasRelatedWork W4327774331 @default.
- W3049273567 hasRelatedWork W4360585206 @default.
- W3049273567 hasVolume "2020" @default.
- W3049273567 isParatext "false" @default.
- W3049273567 isRetracted "false" @default.
- W3049273567 magId "3049273567" @default.
- W3049273567 workType "article" @default.